Density forecast combinations are becoming increasingly popular as a means of improving forecast 'accuracy', as measured by a scoring rule. In this paper we generalise this literature by letting the combination weights follow more general schemes. Sieve estimation is used to optimise the score of the generalised density combination where the combination weights depend on the variable one is trying to forecast. Specific attention is paid to the use of piecewise linear weight functions that let the weights vary by region of the density. We analyse these schemes theoretically, in Monte Carlo experiments and in an empirical study. Our results show that the generalised combinations outperform their linear counterparts.JEL Codes: C53
This paper tests for the influence of political instability on UK economic growth between 1961 and 1997. We construct six variables that quantify political instability and examine the effect on growth. The results suggest that there is a strong link. GARCH‐M models reveal negative effects of instability on growth and positive effects on growth uncertainty. Uncertainty in itself does not affect growth.
Transitioning to electrified transport requires improvements in sustainability, energy density, power density, lifetime, and approved the cost of lithium-ion batteries, with significant opportunities remaining in the development of next-generation cathodes. This presents a highly complex, multiparameter optimization challenge, where developments in cathode chemical design and discovery, theoretical and experimental understanding, structural and morphological control, synthetic approaches, and cost reduction strategies can deliver performance enhancements required in the near- and longer-term. This multifaceted challenge requires an interdisciplinary approach to solve, which has seen the establishment of numerous academic and industrial consortia around the world to focus on cathode development. One such example is the Next Generation Lithium-ion Cathode Materials project, FutureCat, established by the UK’s Faraday Institution for electrochemical energy storage research in 2019, aimed at developing our understanding of existing and newly discovered cathode chemistries. Here, we present our perspective on persistent fundamental challenges, including protective coatings and additives to extend lifetime and improve interfacial ion transport, the design of existing and the discovery of new cathode materials where cation and cation-plus-anion redox-activity can be exploited to increase energy density, the application of earth-abundant elements that could ultimately reduce costs, and the delivery of new electrode topologies resistant to fracture which can extend battery lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.