The high-spin dichloro Mn 2+ and Fe 2+ complexes of 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (1) and 4, 10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane (2) provide durable new compounds of these elements for important fundamental studies and applications. The compounds are especially noteable for their exceptional kinetic stabilities and redox activity. The X-ray crystal structures of all four complexes demonstrate that the ligands enforce a distorted octahedral geometry on the metals with two cis sites occupied by labile chloride ligands. Magnetic measurements reveal that all are high spin with typical magnetic moments. Cyclic voltammetry of the complexes shows reversible redox processes at +0.110 and +0.038 V (versus SHE) for the Fe 3+ /Fe 2+ couples of Fe(1)Cl 2 and Fe(2)Cl 2 , respectively, while the Mn 3+ /Mn 2+ and Mn 4+ /Mn 3+ couples were observed at +0.585 and +1.343 V, and +0.466 and +1.232 V for the complexes Mn(1)Cl 2 and Mn(2)Cl 2 , respectively. Mn 2+ (1) was found to react with H 2 O 2 and other oxidizing agents to produce the Mn 4+ (1) complex. The catalytic efficacy of Mn 4+ (1) in aqueous solution has been assessed in the epoxidation reaction of carbamazepine and hydrogen abstraction reaction with 1,4-cyclohexadiene. The complex has been found to be a selective catalyst, exhibiting moderate catalytic activity in oxygen transfer, but significantly more effective catalytic activity in hydrogen abstraction reactions.
Rare-earth-containing metallomesogens with 4-alkoxy-N-alkyl-2-hydroxybenzaldimine ligands are reported. The stoichiometry of the complexes is [Ln(LH) 3 (NO 3 ) 3 ], where Ln is the trivalent rare-earth ion (Y, La, and Pr to Lu, except Pm) and LH is the Schiff base. The Schiff base ligands are in the zwitterionic form and coordinate through the phenolic oxygen only. The three nitrate groups coordinate in a bidentate fashion. The X-ray single-crystal structures of the nonmesogenic homologous complexes [Ln(LH) 3 (NO 3 ) 3 ], where Ln ) Nd(III), Tb(III), and Dy(III) and LH ) CH 3 OC 6 H 3 (2-OH)CHdNC 4 H 9 , are described. Although the Schiff base ligands do not exhibit a mesophase, the metal complexes do (SmA phase). The mesogenic rare-earth complexes were studied by NMR, IR, EPR, magnetic susceptibility measurements, X-ray diffraction, and molecular modeling. The metal complexes in the mesophase have a very large magnetic anisotropy, so that these magnetic liquid crystals can easily be aligned by an external magnetic field.
The Open University's repository of research publications and other research outputs The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.