SummaryThe cystic kidney diseases nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) share an underlying etiology of dysfunctional cilia. Patients diagnosed with NPHP type II have mutations in the gene INVS (also known as NPHP2), which encodes inversin, a cilia localizing protein. Here, we show that the C. elegans inversin ortholog, NPHP-2, localizes to the middle segment of sensory cilia and that nphp-2 is partially redundant with nphp-1 and nphp-4 (orthologs of human NPHP1 and NPHP4, respectively) for cilia placement within the head and tail sensilla. nphp-2 also genetically interacts with MKS ciliopathy gene orthologs, including mks-1, mks-3, mks-6, mksr-1 and mksr-2, in a sensilla-dependent manner to control cilia formation and placement. However, nphp-2 is not required for correct localization of the NPHP-and MKS-encoded ciliary transition zone proteins or for intraflagellar transport (IFT). We conclude that INVS/NPHP2 is conserved in C. elegans and that nphp-2 plays an important role in C. elegans cilia by acting as a modifier of the NPHP and MKS pathways to control cilia formation and development.
Cilia are microtubule-based cellular organelles that mediate signal transduction. Cilia are organized into several structurally and functionally distinct compartments: the basal body, the transition zone (TZ), and the cilia shaft. In vertebrates, the cystoprotein Inversin localizes to a portion of the cilia shaft adjacent to the TZ, a region termed the “Inversin compartment” (InvC). The mechanisms that establish and maintain the InvC are unknown. In the roundworm C. elegans, the cilia shafts of amphid channel and phasmid sensory cilia are subdivided into two regions defined by different microtubule ultrastructure: a proximal doublet-based region adjacent to the TZ, and a distal singlet-based region. It has been suggested that C. elegans cilia also possess an InvC, similarly to mammalian primary cilia. Here we explored the biogenesis, structure, and composition of the C. elegans ciliary doublet region and InvC. We show that the InvC is conserved and distinct from the doublet region. nphp-2 (the C. elegans Inversin homolog) and the doublet region genes arl-13, klp-11, and unc-119 are redundantly required for ciliogenesis. InvC and doublet region genes can be sorted into two modules—nphp-2+klp-11 and arl-13+unc-119—which are both antagonized by the hdac-6 deacetylase. The genes of this network modulate the sizes of the NPHP-2 InvC and ARL-13 doublet region. Glutamylation, a tubulin post-translational modification, is not required for ciliary targeting of InvC and doublet region components; rather, glutamylation is modulated by nphp-2, arl-13, and unc-119. The ciliary targeting and restricted localization of NPHP-2, ARL-13, and UNC-119 does not require TZ-, doublet region, and InvC-associated genes. NPHP-2 does require its calcium binding EF hand domain for targeting to the InvC. We conclude that the C. elegans InvC is distinct from the doublet region, and that components in these two regions interact to regulate ciliogenesis via cilia placement, ciliary microtubule ultrastructure, and protein localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.