Small perturbations of a choked flow through a thin annular nozzle are investigated. Two cases are considered, corresponding to a ‘choked outlet’ and a ‘choked inlet’ respectively. For the first case, either an acoustic or entropy or vorticity wave is assumed to be travelling downstream towards the nozzle contraction. An asymptotic analysis for low frequency is used to find the reflected acoustic wave that is created. The boundary condition found by Marble & Candel (1977) for a compact choked nozzle is shown to apply to first order, even for circumferentially varying waves. The next-order correction can be expressed as an ‘effective length’ dependent on the mean flow (and hence the particular geometry of the nozzle) in a quantifiable way.For the second case, an acoustic wave propagates upstream and is reflected from a convergent–divergent nozzle. A normal shock is assumed to be present. By considering the interaction of the shock's position and flow perturbations, the reflected propagating waves are found for a compact nozzle. It is shown that a significant entropy disturbance is produced even when the shock is weak, and that for circumferential modes a vorticity wave is also present. Numerical calculations are conducted using a sample geometry and good agreement with the analysis is found at low frequency in both cases, and the range of validity of the asymptotic theory is determined.
Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. Acoustic waves produce fluctuations in heat release, for instance by perturbing the fuel–air ratio or flame shape. These heat fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. A linear model for thermoacoustic oscillations in LPP combustors is described. A thin annular combustor is assumed and so circumferential modes are included but radial dependence is ignored. The geometry consists of straight ducts joined by short regions of area change. Perturbations to the flow can be thought of as a combination of acoustic, entropy and vorticity waves. The development of these waves along the straight ducts is found using a propagation matrix approach. At the entrance to the combustion chamber, a flame model is used in which the unsteady heat release is related to fluctuations in fuel–air ratio. Various possible inlet and outlet conditions are described. The model is then applied to a simplified example based on a sector rig. The resonant modes are found numerically and compared with the frequencies that occurred in experiments.
Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. Acoustic waves produce fluctuations in heat release, for instance by perturbing the fuel-air ratio. These heat fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can form. The resulting limit cycles can have large amplitude causing structural damage. Thermoacoustic oscillations will have a low amplitude initially. Thus linear models can give stability predictions. An unstable linear mode will grow in amplitude until nonlinear effects become important and a limit cycle is achieved. While the frequency of the linear mode can provide a good approximation to that of the resulting limit cycle, linear theories give no prediction of its amplitude. A low-order model for thermoacoustic limit cycles in LPP combustors is described. The approach is based on the fact that the main nonlinearity is in the combustion response to flow perturbations. In LPP combustion, fluctuations in the inlet fuel-air ratio have been shown to be the dominant cause of unsteady combustion: these occur because velocity perturbations in the premix ducts cause a time-varying fuel-air ratio, which then convects downstream. If the velocity perturbation becomes comparable to the mean flow, there will be an amplitude-dependent effect on the equivalence ratio fluctuations entering the combustor and hence on the rate of heat release. A simple nonlinear flame model for this dependence is developed and is assumed to be the major non-linear effect on the limit cycle. Since the Mach number is low, the velocity perturbation can be comparable to the mean flow, with even reverse flow occurring, while the disturbances are still acoustically linear in that the pressure perturbation is still much smaller than the mean. Hence elsewhere the perturbations are treated as linear. In this nonlinear flame model, the flame transfer function describing the combustion response to changes in inlet flow is a function of both frequency and amplitude. The nonlinear flame transfer function is incorporated into a linear thermoacoustic network model for plane waves. Frequency, amplitude and modeshape predictions are compared with results from an atmospheric test rig. The approach is extended to circumferential waves in a thin annular geometry, where the nonlinearity leads to modal coupling.
Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. Acoustic waves produce fluctuations in heat release, for instance by perturbing the fuel-air ratio. These heat fluctuations will in turn generate more acoustic waves and in some situations linear oscillations grow into large amplitude self-sustained oscillations. The resulting limit cycles can cause structural damage. Thermoacoustic oscillations will have a low amplitude initially. Thus linear models can describe the initial growth and hence give stability predictions. An unstable linear mode will grow in amplitude until nonlinear effects become sufficiently important to achieve a limit cycle. While the frequency of the linear mode can often provide a good approximation to that of the resulting limit cycle, linear theories give no prediction of its resulting amplitude. In previous work, we developed a low-order frequency-domain method to model thermoacoustic limit cycles in LPP combustors. This was based on a ‘describing function’ approach and is only applicable when there is a dominant mode and the main nonlinearity is in the combustion response to flow perturbations. In this paper that method is extended into the time domain. The main advantage of the time-domain approach is that limit-cycle stability, the influence of harmonics, and the interaction between different modes can be simulated. In LPP combustion, fluctuations in the inlet fuel-air ratio have been shown to be the dominant cause of unsteady combustion: these occur because velocity perturbations in the premix ducts cause a time-varying fuel-air ratio, which then convects downstream. If the velocity perturbation becomes comparable to the mean flow, there will be an amplitude-dependent effect on the equivalence ratio fluctuations entering the combustor and hence on the rate of heat release. Since the Mach number is low, the velocity perturbation can be comparable to the mean flow, with even reverse flow occurring, while the disturbances are still acoustically linear in that the pressure perturbation is still much smaller than the mean. Hence while the combustion response to flow velocity and equivalence ratio fluctuations must be modelled nonlinearly, the flow perturbations generated as a result of the unsteady combustion can be treated as linear. In developing a time-domain network model for nonlinear thermoacoustic oscillations an initial frequency-domain calculation is performed. The linear network model, LOTAN, is used to categorise the combustor geometry by finding the transfer function for the response of flow perturbations (at the fuel injectors, say) to heat-release oscillations. This transfer function is then converted into the time domain through an inverse Fourier transform to obtain the Green’s function, which thus relates unsteady flow to heat release at previous times. By combining this with a nonlinear flame model (relating heat release to unsteady flow at previous times) a complete time-domain solution can be found by stepping forward in time. If an unstable mode is present, its amplitude will initially grow exponentially (in accordance with linear theory) until saturation effects in the flame model become significant, and eventually a stable limit cycle will be attained. The time-domain approach enables determination of the limit-cycle. In addition, the influence of harmonics and the interaction and exchange of energy between different modes can be simulated. These effects are investigated for longitudinal and circumferential instabilities in an example combustor system and results are compared to frequency-domain limit-cycle predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.