Background/objectives: Despite a high prevalence and association with poor outcomes, screening to identify cognitive impairment (CI) in the emergency department (ED) is uncommon. Identification of high-risk subsets of older adults is a critical challenge to expanding screening programs. We developed and evaluated an automated screening tool to identify a subset of patients at high risk for CI. Methods:In this secondary analysis of existing data collected for a randomized control trial, we developed machine-learning models to identify patients at higher risk of CI using only variables available in electronic health record (EHR). We used records from 1736 community-dwelling adults age > 59 being discharged from three EDs. Potential CI was determined based on the Blessed Orientation Memory Concentration (BOMC) test, administered in the ED. A nested cross-validation framework was used to evaluate machine-learning algorithms, comparing area under the receiver-operator curve (AUC) as the primary metric of performance.Results: Based on BOMC scores, 121 of 1736 (7%) participants screened positive for potential CI at the time of their ED visit. The best performing algorithm, an XGBoost model, predicted BOMC positivity with an AUC of 0.72. With a classification threshold of 0.4, this model had a sensitivity of 0.73, a specificity of 0.64, a negative predictive value of 0.97, and a positive predictive value of 0.13. In a hypothetical ED with 200 older adult visits per week, the use of this model would lead to a decrease in the in-person screening burden from 200 to 77 individuals in order to detect 10 of 14 patients who would fail a BOMC. Conclusion:This study demonstrates that an algorithm based on EHR data can define a subset of patients at higher risk for CI. Incorporating such an See related editorial by Hirshon in this issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.