Hydrogen peroxide thrusters rely on catalysts to generate steam and oxygen, and yet relatively little is known about the processes that occur within the catalyst bed. Previous models have assumed that both diffusional resistances and temperature differences between the catalyst and the fluid can be ignored. In this paper a 1D, multiscale, transient, heterogeneous, and diffusion-enabled model of catalytic hydrogen peroxide decomposition was developed and applied to a 3D-printed catalyst bed, which offers potentially significant benefits over conventional silver mesh catalysts. A triply periodic minimal surface was the chosen geometry. Simulation results suggest that the heterogeneous and diffusion-limited nature of the reaction cannot be ignored if accurate predictions about the catalyst bed performance are to be made. Through the newfound capabilities of the present model, the influence of various parameters, such as the hydrogen peroxide concentration, pressure, geometric unit cell size, bed void fraction, and support material, were characterized. Increasing the concentration, decreasing the unit cell size, and increasing the void fraction are all effective strategies for improving the performance of hydrogen peroxide thrusters, made possible by new catalytic materials and the advent of 3D-printing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.