There is a large economic interest to characterize heads, hearts and tails fractions during fruit spirit distillation by simple, fast, low-volume and low-cost analytical methods. This study evaluated the potential of ultraviolet (UV)-visible-infrared spectroscopy (230–1000 nm) to characterize and differentiate these distillate fractions. Heads, hearts and tails fractions of 10 different fruit spirits were separated by sensory evaluation and investigated by absorbance spectroscopy. Principal component analysis indicated that UV spectroscopy at a wavelength range from 230 to 310 nm had the highest potential to differentiate all three distillate fractions. While all tails fractions showed significantly different UV spectra, a clear differentiation between heads and hearts fractions was limited. However, an additional UV spectroscopy of 100 mL subfractions sampled during the shift from heads to hearts in three additional distillations did reveal significant differences. The calculated integrals of the according best-fit trendline functions of the spectra indicated a trend towards reduced area-under-the-curve and zero-point values during the shift. This could be a new lead to implement an analytical method for in-line process control during fruit spirit production.
Process impairing foam formation occurs regularly in batch distillation devices of the spirit industry. It negatively influences process and product quality. Up to now, such foam-related problems have not been in the focus of scientific investigations. This study aimed at preventing impairing foam formations by adapting the thermal energy input in fruit and grain mash distillations in larger scale batch distillations. The results showed that a reduction of the thermal energy input to 43 ± 1 W·L−1 during the initial heating of the mash leads to less flooding of the distillation apparatus and to a higher concentration of lower boiling compounds like methanol, acetaldehyde, and ethyl acetate as well as ethanol in the first fractions of the distillates. A standard process time and less energy consumption could be achieved by increasing the energy input again after prior reduction. However, this led to a reduction of the ethanol concentration in the distillate fractions of up to 4.3%vol, also most severe in the first fractions. A significant influence on analyzed volatile compounds in the distillate besides ethanol could not be detected. This is the first study that uses defined thermal energy input adaptations for foam management in larger scale distillation devices. The results lead the way to a more efficient distillation process with less foam formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.