The present study describes, for the first time, a temporal and spatial cellular expression of erythropoietin (Epo) and Epo receptor (Epo-R) with the evolution of a cerebral infarct after focal permanent ischemia in mice. In addition to a basal expression of Epo in neurons and astrocytes, a postischemic Epo expression has been localized specifically to endothelial cells (1 day), microglia/macrophage-like cells (3 days), and reactive astrocytes (7 days after occlusion). Under these conditions, the Epo-R expression always precedes that of Epo for each cell type. These results support the hypothesis that there is a continuous formation of Epo, with its corresponding receptor, during the active evolution of a focal cerebral infarct and that the Epo/Epo-R system might be implicated in the processes of neuroprotection and restructuring (such as angiogenesis and gliosis) after ischemia. To support this hypothesis, a significant reduction in infarct volume (47%; P < 0.0002) was found in mice treated with recombinant Epo 24 hours before induction of cerebral ischemia. Based on the above, we propose that the Epo/Epo-R system is an endogenous mechanism that protects the brain against damages consequent to a reduction in blood flow, a mechanism that can be amplified by the intracerebroventricular application of exogenous recombinant Epo.
After cerebral ischemia, angiogenesis, by supplying for the deficient perfusion, may be a beneficial process for limiting neuronal death and promoting tissue repair. In this study, we showed that the combination of Ang-1 and vascular endothelial growth factor (VEGF) provides a more adapted therapeutic strategy than the use of VEGF alone. Indeed, we showed on a focal ischemia model that an early administration of VEGF exacerbates ischemic damage, because of its effects on bloodbrain barrier (BBB) permeability. In contrast, a coapplication of Ang-1 and VEGF leads to a significant reduction of the ischemic and edema volumes by 50% and 42%, respectively, in comparison with VEGF-treated mice. We proposed that Ang-1 blocks the BBB permeability effect of VEGF in association with a modulation of matrix metalloproteinase (MMP) activity. Indeed, we showed on both ischemic in vivo and BBB in vitro models that VEGF enhances BBB damage and MMP-9 activity and that Ang-1 counteracts both effects. However, we also showed a synergic angiogenic effect of Ang-1 and VEGF in the brain. Taken together, these results allow to propose that, in cerebral ischemia, the combination of Ang-1 and VEGF could be used early to promote the formation of mature neovessels without inducing side effects on BBB permeability.
q-Space imaging (Callaghan, J. Magn. Reson. 88, 493 (1990)) has been used to obtain mouse brain water displacement profiles. These profiles take the form of a unidirectional incoherent-displacement probability density distribution. Two groups of mice were studied, a normal group and one in which surgery had been performed to reduce the supply of blood to the forebrain. In the normal group the incoherent displacement of water was reduced postmortem. Four of the surgically treated mice yielded displacement profiles that resembled those obtained postmortem; the remaining two were near normal. This study demonstrates the feasibility of in vivo q-space imaging. The displacement profile changes that occur subsequent to an interruption of the forebrain blood supply are consistent with the hyperintensity changes seen in diffusion-weighted imaging.
Various studies describe increased concentrations of transforming growth factor-beta (TGF-beta) in brain tissue after acute brain injury. However, the role of endogenously produced TGF-beta after brain damage to the CNS remains to be clearly established. Here, the authors examine the influence of TGF-beta produced after an episode of cerebral ischemia by injecting a soluble TGF-beta type II receptor fused with the Fc region of a human immunoglobulin (TbetaRIIs-Fc). First, this molecular construct was characterized as a selective antagonist of TGF-beta. Then, the authors tested its ability to reverse the effect of TGF-beta1 on excitotoxic cell death in murine cortical cell cultures. The addition of 1 microg/mL of TbetaRIIs-Fc to the exposure medium antagonized the neuroprotective activity of TGF-beta1 in N-methyl-D-aspartate (NMDA)-induced excitotoxic cell death. These results are consistent with the hypothesis that TGF-beta1 exerts a negative modulatory action on NMDA receptor-mediated excitotoxicity. To determine the role of TGF-beta1 produced in response to brain damage, the authors used a model of an excitotoxic lesion induced by the intrastriatal injection of 75 nmol of NMDA in the presence of 1.5 microg of TbetaRIIs-Fc. The intrastriatal injection of NMDA was demonstrated to induce an early upregulation of the expression of TGF-beta1 mRNA. Furthermore, when added to the excitotoxin, TbetaRIIs-Fc increased (by 2.2-fold, P < 0.05) the lesion size. These observations were strengthened by the fact that an intracortical injection of TbetaRIIs-Fc in rats subjected to a 30-minute reversible cerebral focal ischemia aggravated the volume of infarction. In the group injected with the TGF-beta1 antagonist, a 3.5-fold increase was measured in the infarction size (43.3 +/- 9.5 versus 152.8 +/- 46.3 mm3; P < 0.05). In conclusion, by antagonizing the influence of TGF-beta in brain tissue subjected to excitotoxic or ischemic lesion, the authors markedly exacerbated the resulting extent of necrosis. These results suggest that, in response to such insults, brain tissue responds by the synthesis of a neuroprotective cytokine, TGF-beta1, which is involved in the limitation of the extent of the injury. The pharmacologic potentiation of this endogenous defensive mechanism might represent an alternative and novel strategy for the therapy of hypoxic-ischemic cerebral injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.