Background There is an urgent need for easy-to-perform bedside measures to detect residual consciousness in clinically unresponsive patients with acute brain injury. Interestingly, the sympathetic control of pupil size is thought to be lost in states of unconsciousness. We therefore hypothesized that administration of brimonidine (an alpha-2-adrenergic agonist) eye drops into one eye should produce a pharmacologic Horner’s syndrome if the clinically unresponsive patient is conscious, but not if the patient is unconscious. Here, in a first step to explore this hypothesis, we investigated the potential of brimonidine eye drops to distinguish preserved sympathetic pupillary function in awake volunteers from impairment of sympathetic tone in patients in a coma. Methods We enrolled comatose patients admitted for acute brain injury to one of the intensive care units (ICU) of a tertiary referral center, in whom EEG and/or neuroimaging for all practical purposes had ruled out residual consciousness. Exclusion criteria were deep sedation, medications with known drug interactions with brimonidine, and a history of eye disease. Age- and sex-matched healthy and awake volunteers served as controls. We measured pupils of both eyes, under scotopic conditions, at baseline and five times 5–120 min after administering brimonidine into the right eye, using automated pupillometry. Primary outcomes were miosis and anisocoria at the individual and group levels. Results We included 15 comatose ICU patients (seven women, mean age 59 ± 13.8 years) and 15 controls (seven women, mean age 55 ± 16.3 years). At 30 min, miosis and anisocoria were seen in all 15 controls (mean difference between the brimonidine-treated pupil and the control pupil: − 1.31 mm, 95% CI [− 1.51; − 1.11], p < 0.001), but in none (p < 0.001) of the 15 ICU patients (mean difference: 0.09 mm, 95% CI [− 0.12;0.30], p > 0.99). This effect was unchanged after 120 min and remained robust in sensitivity analyses correcting for baseline pupil size, age, and room illuminance. Conclusion In this proof-of-principle study, brimonidine eye drops produced anisocoria in awake volunteers but not in comatose patients with brain injury. This suggests that automated pupillometry after administration of brimonidine can distinguish between the extremes of the spectrum of consciousness (i.e., fully conscious vs. deeply comatose). A larger study testing the “intermediate zone” of disorders of consciousness in the ICU seems warranted.
ObjectivesUnderstanding the dynamics of reorganized network-level brain functions after hemispherectomy is important for treatment, prognostication, and rehabilitation of brain injury, but also for investigating questions of fundamental neurobehavioral interest: How does the brain promote consciousness despite loss of one hemisphere?MethodsWe studied resting-state functional connectivity (RSFC) in a high-functioning middle-aged man 6 years after functional hemispherectomy following malignant middle cerebral artery infarction, and we compared results to RSFC in 20 healthy controls.ResultsOur analysis indicates increased between-network connectivity for all seven networks examined in the patient's preserved hemisphere, compared to healthy controls, suggesting a shift toward increased between-network connectivity following near-complete loss of one hemisphere during adulthood.ConclusionsThese data corroborate and extend recent findings of increased between-network connectivity in the remaining hemisphere after surgical hemispherectomy for intractable epilepsy during childhood. Our results support a neuroplasticity model with reorganization of distributed brain connectivity within the preserved hemisphere as part of the road to recovery after brain injury, as well as recovery of consciousness and cognitive functions, after hemispherectomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.