Protein-folding intermediates have been implicated in amyloid fibril formation involved in neurodegenerative disorders. However, the structural mechanisms by which intermediates initiate fibrillar aggregation have remained largely elusive. To gain insight, we used relaxation dispersion nuclear magnetic resonance spectroscopy to determine the structure of a low-populated, on-pathway folding intermediate of the A39V/N53P/V55L (A, Ala; V, Val; N, Asn; P, Pro; L, Leu) Fyn SH3 domain. The carboxyl terminus remains disordered in this intermediate, thereby exposing the aggregation-prone amino-terminal β strand. Accordingly, mutants lacking the carboxyl terminus and thus mimicking the intermediate fail to safeguard the folding route and spontaneously form fibrillar aggregates. The structure provides a detailed characterization of the non-native interactions stabilizing an aggregation-prone intermediate under native conditions and insight into how such an intermediate can derail folding and initiate fibrillation.
Despite its growing importance in biology and in biomaterials development, liquid-liquid phase separation of proteins remains poorly understood. In particular, the molecular mechanisms underlying simple coacervation of proteins, such as the extracellular matrix protein elastin, have not been reported. Coacervation of the elastin monomer, tropoelastin, in response to heat and salt is a critical step in the assembly of elastic fibers in vivo, preceding chemical crosslinking. Elastin-like polypeptides (ELPs) derived from the tropoelastin sequence have been shown to undergo a similar phase separation, allowing formation of biomaterials that closely mimic the material properties of native elastin. We have used NMR spectroscopy to obtain site-specific structure and dynamics of a self-assembling elastin-like polypeptide along its entire self-assembly pathway, from monomer through coacervation and into a cross-linked elastic material. Our data reveal that elastin-like hydrophobic domains are composed of transient β-turns in a highly dynamic and disordered chain, and that this disorder is retained both after phase separation and in elastic materials. Cross-linking domains are also highly disordered in monomeric and coacervated ELP 3 and form stable helices only after chemical cross-linking. Detailed structural analysis combined with dynamic measurements from NMR relaxation and diffusion data provides direct evidence for an entropy-driven mechanism of simple coacervation of a protein in which transient and nonspecific intermolecular hydrophobic contacts are formed by disordered chains, whereas bulk water and salt are excluded.phase separation | elastin | NMR | protein structure | dynamics T he liquid-liquid phase separation (LLPS) of molecules has long been exploited to concentrate and encapsulate molecules for drug delivery and food preparation (1, 2). In biology, there is increasing awareness that many proteins exhibit this type of phase behavior, allowing transient microenvironments to be quickly assembled and disassembled in response to changing solution conditions, or the availability of binding partners (3, 4). Protein phase separation occurs intracellularly to generate various membraneless organelles, such as ribonucleoprotein (RNP) bodies involved in nucleic acid processing, transport, and storage (5). A similar phenomenon is observed in the extracellular matrix as a critical step in the synthesis of elastic fibers, which provide extensibility, recoil, and resilience to tissues (6, 7). In the latter system, LLPS of monomeric elastin results in hydrated protein-rich coacervate droplets that are deposited and crosslinked to form an elastic matrix (7,8). In addition to their fundamental importance to biology, the dynamic reversibility of LLPS makes phase-separated states of proteins an attractive platform for development of responsive biomaterials with broad application, for instance as scaffolds for tissue engineering or as carriers in drug delivery systems (9-11).Despite the keen interest in proteins that undergo s...
Peptides comprising residues 106-126 of the human prion protein (PrP) exhibit many features of the full-length protein. PrP(106-126) induces apoptosis in neurons, forms fibrillar aggregates, and can mediate the conversion of native cellular PrP (PrP(C)) to the scrapie form (PrP(Sc)). Despite a wide range of biochemical and biophysical studies on this peptide, including investigation of its propensity for aggregation, interactions with cell membranes, and PrP-like toxicity, the structure of amyloid fibrils formed by PrP(106-126) remains poorly defined. In this study we use solid-state nuclear magnetic resonance to define the secondary and quaternary structure of PrP(106-126) fibrils. Our results reveal that PrP(106-126) forms in-register parallel beta sheets, stacked in an antiparallel fashion within the mature fibril. The close intermolecular contacts observed in the fibril core provide a rational for the sequence-dependent behavior of PrP(106-126), and provide a basis for further investigation of its biological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.