Analysis of the functional approximations used to transform between geographic and Altitude‐Adjusted Corrected Geomagnetic (AACGM) coordinates reveals that errors of >50 km can occur in the auroral and polar regions. These errors are the result of efforts to better approximate AACGM coordinates near the magnetic equator and the South Atlantic Anomaly. In these regions AACGM coordinates are not defined and alternate coordinates have been used. This augmentation and emphasis on the solution in regions near the equator result in spherical harmonic approximating functions that are less accurate than need be in the auroral and polar regions. In response, a new set of spherical harmonic coefficients have been derived that better represent AACGM coordinates in these regions. These new AACGM coefficients are limited to below 2000 km in altitude in order to ensure accuracy. For altitudes above 2000 km, a magnetic field‐line tracing solution is recommended. A software package developed to take advantage of the new AACGM coefficients provides the capability of tracing magnetic field lines at any altitude, for improved accuracy. In addition, linear interpolation between 5 year epochs is used to produce coordinates that vary smoothly over the entire period from 1965 to present. The intent of this work is to provide a more accurate procedure for determining AACGM coordinates in the auroral and polar regions for the study of magnetospheric and ionospheric processes.
Over the last decade, the Super Dual Auroral Radar Network (SuperDARN) has undergone a dramatic expansion in the Northern Hemisphere with the addition of more than a dozen radars offering improved coverage at mid‐latitudes (50°–60° magnetic latitude) and in the polar cap (80°–90° magnetic latitude). In this study, we derive a statistical model of ionospheric convection (TS18) using line‐of‐sight velocity measurements from the complete network of mid‐latitude, high‐latitude, and polar radars for the years 2010–2016. These climatological patterns are organized by solar wind, interplanetary magnetic field (IMF), and dipole tilt angle conditions. We find that for weak solar wind driving conditions the TS18 model patterns are largely similar to the average patterns obtained using high‐latitude radar data only. For stronger solar wind driving the inclusion of mid‐latitude radar data at the equatorward extent of the ionospheric convection can increase the measured cross‐polar cap potential (ΦPC) by as much as 40%. We also derive an alternative model organized by the Kp index to better characterize the statistical convection under a range of magnetic activity conditions. These Kp patterns exhibit similar IMF By dependencies as the TS18 model results and demonstrate a linear increase in ΦPC with increasing Kp for a given IMF orientation. Overall, the mid‐latitude radars provide a better specification of the flows within the nightside Harang reversal region for moderate to strong solar wind driving or geomagnetic activity, while the polar radars improve the quality of velocity measurements in the deep polar cap under all conditions.
Using line‐of‐sight measurements of horizontal plasma drift from the Super Dual Auroral Radar Network (SuperDARN) located in the Northern and Southern hemispheres over a period extending from 1998 to 2002, statistical models of the high‐latitude convection electric field are derived for various ranges of interplanetary magnetic field (IMF) magnitude and orientation and for several ranges of dipole tilt angle. Direct comparison of the corresponding convection patterns in each hemisphere shows that under neutral tilt conditions (dipole tilt angle magnitude <10°) the patterns are most similar. However, a strong dipole tilt angle dependence is observed under northward (Bz+) and By dominated IMF conditions. For IMF Bz+, reverse convection is observed to be much stronger during positive tilt than negative tilt. For IMF By dominated conditions (IMF Bz = 0), the round convection cell is more enhanced for positive tilt than for negative tilt, particularly for IMF By < 0 in both hemispheres. The presence of a lobe cell is a likely cause of this enhancement, although it is not entirely clear why it occurs preferentially under IMF By < 0. In addition, the crescent‐shaped cells are weakened as tilt angle progresses from negative to positive, most likely due to vastly different solar produced conductivities under different tilt angles. For IMF Bz−, asymmetric values of the cross‐polar cap potentials (ΦPC) are observed between hemispheres, with ΦPC in the south being systematically larger than ΦPC in the north. Although neutral tilt patterns are similar enough to be used interchangeably, convection has a strong dipole tilt dependence and a Northern Hemisphere convection model should not be applied to the Southern Hemisphere if dipole tilt angle is not taken into account. When dipole tilt is accounted for, ΦPC differs between hemispheres by less than 10% on average, but the strength of the convection in the individual cells differs by 15% to 20% on average.
The Super Dual Auroral Radar Network (SuperDARN) is a network of high-frequency (HF) radars located in the high-and mid-latitude regions of both hemispheres that is operated under international cooperation. The network was originally designed for monitoring the dynamics of the ionosphere and upper atmosphere in the high-latitude regions. However, over the last approximately 15 years, SuperDARN has expanded into the mid-latitude regions. With radar coverage that now extends continuously from auroral to sub-auroral and mid-latitudes, a wide variety of new scientific findings have been obtained. In this paper, the background of mid-latitude SuperDARN is presented at first. Then, the accomplishments made with mid-latitude SuperDARN radars are reviewed in five specified scientific and technical areas: convection, ionospheric irregularities, HF propagation analysis, ion-neutral interactions, and magnetohydrodynamic (MHD) waves. Finally, the present status of mid-latitude SuperDARN is updated and directions for future research are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.