This is a repository copy of Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH) : a stepped-wedge cluster-randomised trial. Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH) : a stepped-wedge cluster-randomised trial. The Lancet. ISSN 0140-6736 https://doi.org/10.1016/S0140-6736(18)32521-2 eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/
ReuseThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/
Implications of all the available evidenceDespite the success of some smaller projects, there was no survival benefit from a national quality improvement programme to implement a care pathway for patients undergoing emergency abdominal surgery. To succeed, large national quality improvement programmes need to allow for differences between hospitals and ensure teams have both the time and resources needed to improve patient care.
Coal is the most abundant fossil fuel in the world and is likely to outlast gas and oil for centuries. However, with global issues like climate change at the forefront of public attention there is a trend towards the development of a carbon constrained economy. As a result, research has intensified in the last decade on modes of operating coal fired power plants with carbon capture and storage (CCS). In particular, pre-combustion options via coal gasification, especially integrated gasification combined cycle (IGCC) processes, are attracting the attention of governments, industry and the research community as an attractive alternative to conventional power generation. It is possible to build an IGCC plant with CCS with conventional technologies however; these processes are energy intensive and likely to reduce power plant efficiencies. Novel ceramic membrane technologies, in particular molecular sieving silica (MSS) and pervoskite membranes, offer the opportunity to reduce efficiency losses by separating gases at high temperatures and pressures. MSS membranes can be made preferentially selective for H 2 , enabling both enhanced production, via a water-gas shift membrane reactor, and recovery of H 2 from the syngas stream at high temperatures. They also allow CO 2 to be concentrated at high pressures, reducing the compression loads for transportation and enabling simple integration with CO 2 storage or sequestration operations. Perovskite membranes provide a viable alternative to cryogenic distillation for air separation by delivering the tonnage of oxygen required for coal gasification at a reduced cost. In this review we examine ceramic membrane technologies for high temperature gas separation and discuss the operational, mechanical, design and process considerations necessary for their successful integration into IGCC with CCS systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.