Experimental studies on the mechanism of copper-catalyzed amination of aryl halides have been undertaken for the coupling of piperidine with iodobenzene using a Cu(I) catalyst and the organic base tetrabutylphosphonium malonate (TBPM). The use of TBPM led to high reactivity and high conversion rates in the coupling reaction, as well as obviating any mass transfer effects. The often commonly employed O,O-chelating ligand 2-acetylcyclohexanone was surprisingly found to have a negligible effect on the reaction rate, and on the basis of NMR, calorimetric, and kinetic modeling studies, the malonate dianion in TBPM is instead postulated to act as an ancillary ligand in this system. Kinetic profiling using reaction progress kinetic analysis (RPKA) methods show the reaction rate to have a dependence on all of the reaction components in the concentration range studied, with first-order kinetics with respect to [amine], [aryl halide], and [Cu]total. Unexpectedly, negative first-order kinetics in [TBPM] was observed. This negative rate dependence in [TBPM] can be explained by the formation of an off-cycle copper(I) dimalonate species, which is also argued to undergo disproportionation and is thus responsible for catalyst deactivation. The key role of the amine in minimizing catalyst deactivation is also highlighted by the kinetic studies. An examination of the aryl halide activation mechanism using radical probes was undertaken, which is consistent with an oxidative addition pathway. On the basis of these findings, a more detailed mechanistic cycle for the C–N coupling is proposed, including catalyst deactivation pathways.
The new DO3A-derived dithiocarbamate ligand, DO3A-(t)Bu-CS2K, is formed by treatment of the ammonium salt [DO3A-(t)Bu]HBr with K2CO3 and carbon disulfide. DO3A-(t)Bu-CS2K reacts with the ruthenium complexes cis-[RuCl2(dppm)2] and [Ru(CH═CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole) to yield [Ru(S2C-DO3A-(t)Bu)(dppm)2](+) and [Ru(CH═CHC6H4Me-4)(S2C-DO3A-(t)Bu)(CO)(PPh3)2], respectively. Similarly, the group 10 metal complexes [Pd(C,N-C6H4CH2NMe2)Cl]2 and [PtCl2(PPh3)2] form the dithiocarbamate compounds, [Pd(C,N-C6H4CH2NMe2)(S2C-DO3A-(t)Bu)] and [Pt(S2C-DO3A-(t)Bu)(PPh3)2](+), under the same conditions. The linear gold complexes [Au(S2C-DO3A-(t)Bu)(PR3)] are formed by reaction of [AuCl(PR3)] (R = Ph, Cy) with DO3A-(t)Bu-CS2K. However, on reaction with [AuCl(tht)] (tht = tetrahydrothiophene), the homoleptic digold complex [Au(S2C-DO3A-(t)Bu)]2 is formed. Further homoleptic examples, [M(S2C-DO3A-(t)Bu)2] (M = Ni, Cu) and [Co(S2C-DO3A-(t)Bu)3], are formed from treatment of NiCl2·6H2O, Cu(OAc)2, or Co(OAc)2, respectively, with DO3A-(t)Bu-CS2K. The molecular structure of [Ni(S2C-DO3A-(t)Bu)2] was determined crystallographically. The tert-butyl ester protecting groups of [M(S2C-DO3A-(t)Bu)2] (M = Ni, Cu) and [Co(S2C-DO3A-(t)Bu)3] are cleaved by trifluoroacetic acid to afford the carboxylic acid products, [M(S2C-DO3A)2] (M = Ni, Cu) and [Co(S2C-DO3A)3]. Complexation with Gd(III) salts yields trimetallic [M(S2C-DO3A-Gd)2] (M = Ni, Cu) and tetrametallic [Co(S2C-DO3A-Gd)3], with r(1) values of 11.5 (Co) and 11.0 (Cu) mM(-1) s(-1) per Gd center. DO3A-(t)Bu-CS2K can also be used to prepare gold nanoparticles, Au@S2C-DO3A-(t)Bu, by displacement of the surface units from citrate-stabilized nanoparticles. This material can be transformed into the carboxylic acid derivative Au@S2C-DO3A by treatment with trifluoroacetic acid. Complexation with Gd(OTf)3 or GdCl3 affords Au@S2C-DO3A-Gd with an r(1) value of 4.7 mM(-1) s(-1) per chelate and 1500 mM(-1) s(-1) per object.
We report the facile generation of Ir PC carbene P pincer systems. These systems are accessed from the reaction between [IrCl(COD)] 2 and a bis(diphenyl)phenylene P(OH)P proligand (1) with concomitant dehydration, followed by salt metathesis/ligand exchange in the case of cationic examples. In contrast to previously reported double C-H activation synthetic strategies to access similar complexes, accessing Ir PC carbene P complexes through dehydration proceeds rapidly at room temperature and provides the first example of the incorporation of phosphino aryl substituents. The generated complexes are shown to possess the ability to activate inert C-H bonds and partake in ligand cooperativity. Mechanistic evidence suggests that divergent C-H and O-H activation pathways of ligand 1 ultimately lead to the same Ir PC carbene P product (2). It is hoped that the stability and synthetic accessibility of these complexes will encourage their increased use in catalyst surveys.
A series of copper(I) alkylamide complexes have been synthesised; copper(I) dicyclohexylamide (1), copper(I) 2,2,6,6-tetramethylpiperidide (2), copper(I) pyrrolidide (3), copper(I) piperidide (4), and copper(I) benzylamide (5). Their solid-state structures and structures in [D6]benzene solution are characterised, with the aggregation state in solution determined by a combination of DOSY NMR spectroscopy and DFT calculations. Complexes 1, 2 and 4 are shown to exist as tetramers in the solid state by X-ray crystallography. In [D6]benzene solution, complexes 1, 2 and 5 were found by using 1H DOSY NMR to exist in rapid equilibrium between aggregates with average aggregation numbers of 2.5, 2.4 and 3.3, respectively, at 0.05 m concentration. Conversely, distinct trimeric, tetrameric and pentameric forms of 3 and 4 were distinguishable by one-dimensional 1H and 1H DOSY NMR spectroscopy. Complexes 3–5 are found to react stoichiometrically with iodobenzene, in the presence or absence of 1,10-phenanthroline as an ancillary ligand, to give arylamine products indicative of their role as potential intermediates in the modified Ullmann reaction. The role of phenanthroline has also been explored both in the stoichiometric reaction and in the catalytic Ullmann protocol.
We report the first example of a cobalt PCcarbeneP pincer complex (1) featuring a central alkylidene carbon donor accessed through the dehydration of an alcoholic POP proligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.