We present a new dataset for machine comprehension in the medical domain. Our dataset uses clinical case reports with around 100,000 gap-filling queries about these cases. We apply several baselines and state-of-the-art neural readers to the dataset, and observe a considerable gap in performance (20% F1) between the best human and machine readers. We analyze the skills required for successful answering and show how reader performance varies depending on the applicable skills. We find that inferences using domain knowledge and object tracking are the most frequently required skills, and that recognizing omitted information and spatio-temporal reasoning are the most difficult for the machines. * We provide the information about accessing the dataset, as well as the code for the experiments, at http://github. com/clips/clicr.
We present an unsupervised contextsensitive spelling correction method for clinical free-text that uses word and character n-gram embeddings. Our method generates misspelling replacement candidates and ranks them according to their semantic fit, by calculating a weighted cosine similarity between the vectorized representation of a candidate and the misspelling context. We greatly outperform two baseline off-the-shelf spelling correction tools on a manually annotated MIMIC-III test set, and counter the frequency bias of an optimized noisy channel model, showing that neural embeddings can be successfully exploited to include context-awareness in a spelling correction model. Our source code, including a script to extract the annotated test data, can be found at https://github.com/ pieterfivez/bionlp2017.
We have three contributions in this work: 1. We explore the utility of a stacked denoising autoencoder and a paragraph vector model to learn task-independent dense patient representations directly from clinical notes. To analyze if these representations are transferable across tasks, we evaluate them in multiple supervised setups to predict patient mortality, primary diagnostic and procedural category, and gender. We compare their performance with sparse representations obtained from a bag-of-words model. We observe that the learned generalized representations significantly outperform the sparse representations when we have few positive instances to learn from, and there is an absence of strong lexical features. 2. We compare the model performance of the feature set constructed from a bag of words to that obtained from medical concepts. In the latter case, concepts represent problems, treatments, and tests. We find that concept identification does not improve the classification performance. 3. We propose novel techniques to facilitate model interpretability. To understand and interpret the representations, we explore the best encoded features within the patient representations obtained from the autoencoder model. Further, we calculate feature sensitivity across two networks to identify the most significant input features for different classification tasks when we use these pretrained representations as the supervised input. We successfully extract the most influential features for the pipeline using this technique.
We present an approach to learning multi-sense word embeddings relying both on monolingual and bilingual information. Our model consists of an encoder, which uses monolingual and bilingual context (i.e. a parallel sentence) to choose a sense for a given word, and a decoder which predicts context words based on the chosen sense. The two components are estimated jointly. We observe that the word representations induced from bilingual data outperform the monolingual counterparts across a range of evaluation tasks, even though crosslingual information is not available at test time.
In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no relational information, we obtain comparable performance to previous approaches on the MSH-WSD dataset, which is a well-known dataset in the biomedical domain. Additionally, our method is fast and easy to set up and extend to other domains. Supplementary materials, including source code, can be found at https: //github.com/clips/yarn
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.