AimsDeletion of the transcription factor Cited2 causes penetrant and phenotypically heterogenous cardiovascular and laterality defects and adrenal agenesis. Heterozygous human CITED2 mutation is associated with congenital heart disease, suggesting haploinsufficiency. Cited2 functions partly via a Nodal→Pitx2c pathway controlling left–right patterning. In this present study we investigated the primary site of Cited2 function and mechanisms of haploinsufficiency.Methods and resultsA Cited2 conditional allele enabled its deletion in particular cell lineages in mouse development. A lacZ reporter cassette allowed indication of deletion. Congenic Cited2 heterozygous mice were used to investigate haploinsufficiency. Embryos were examined by magnetic resonance imaging, by sectioning and by quantitative real-time polymerase chain reaction (qRT-PCR). Epiblast-specific deletion of Cited2 using Sox2Cre recapitulated penetrant and phenotypically heterogenous cardiovascular and laterality defects. Neural crest-specific deletion using Wnt1Cre affected cranial ganglia but not cardiac development. Mesodermal deletion with Mesp1Cre resulted in low penetrance of septal defect. Mesodermal deletion with T-Cre resulted in adrenal agenesis, but infrequent cardiac septal and laterality defects. β-Galatactosidase staining and qRT-PCR demonstrated the efficiency and location of Cited2 deletion. Murine Cited2 heterozygosity is itself associated with cardiac malformation, with three of 45 embryos showing ventricular septal defect. Cited2 gene expression in E13.5 hearts was reduced 2.13-fold in Cited2+/− compared with wild-type (P = 2.62 × 10−6). The Cited2 target gene Pitx2c was reduced 1.5-fold in Cited2+/− (P = 0.038) hearts compared with wild-type, and reduced 4.9-fold in Cited2−/− hearts (P = 0.00031). Pitx2c levels were reduced two-fold (P = 0.009) in Cited2+/− embryos, in comparison with wild-type. Cited2 and Pitx2c expression were strongly correlated in wild-type and Cited2+/− hearts (Pearson rank correlation = 0.68, P = 0.0009). Cited2 expression was reduced 7474-fold in Sox2Cre deleted hearts compared with controls (P = 0.00017) and Pitx2c was reduced 3.1-fold (P = 0.013). Deletion of Cited2 with Mesp1Cre resulted in a 130-fold reduction in cardiac Cited2 expression compared with control (P = 0.0002), but Pitx2c expression was not affected.ConclusionThese results indicate that phenotypically heterogenous and penetrant cardiac malformations in Cited2 deficiency arise from a primary requirement in epiblast derivatives for left–right patterning, with a secondary cell-autonomous role in the mesoderm. Cardiac malformation associated with Cited2 haploinsufficiency may occur by reducing expression of key Cited2 targets such as Pitx2c.
Cardiac failure affects 1.5% of the adult population and is predominantly caused by myocardial dysfunction secondary to coronary vascular insufficiency. Current therapeutic strategies improve prognosis only modestly, as the primary cause -- loss of normally functioning cardiac myocytes -- is not being corrected. Adult cardiac myocytes are unable to divide and regenerate to any significant extent following injury. New cardiac myocytes are, however, created during embryogenesis from progenitor cells and then by cell division from existing cardiac myocytes. This process is intimately linked to the development of coronary vasculature from progenitors originating in the endothelium, the proepicardial organ and neural crest. In this review, we systematically evaluate approx. 90 mouse mutations that impair heart muscle growth during development. These studies provide genetic evidence for interactions between myocytes, endothelium and cells derived from the proepicardial organ and the neural crest that co-ordinate myocardial and coronary vascular development. Conditional knockout and transgenic rescue experiments indicate that Vegfa, Bmpr1a (ALK3), Fgfr1/2, Mapk14 (p38), Hand1, Hand2, Gata4, Zfpm2 (FOG2), Srf and Txnrd2 in cardiac myocytes, Rxra and Wt1 in the proepicardial organ, EfnB2, Tek, Mapk7, Pten, Nf1 and Casp8 in the endothelium, and Bmpr1a and Pax3 in neural crest cells are key molecules controlling myocardial development. Coupling of myocardial and coronary development is mediated by BMP (bone morphogenetic protein), FGF (fibroblast growth factor) and VEGFA (vascular endothelial growth factor A) signalling, and also probably involves hypoxia. Pharmacological targeting of these molecules and pathways could, in principle, be used to recreate the embryonic state and achieve coupled myocardial and coronary vascular regeneration in failing hearts.
A comparative semi-automated morphometric study was performed on the distribution of prion protein, spongiform change and astrocytosis in the brains of nine cases of sporadic Creutzfeldt-Jakob disease of differing genotype at the methionine-valine polymorphism at codon 129 of the prion protein gene. Custom-designed image analysis software was used to produce objective figures for each of the different pathological features throughout 13 different areas of the brain used for analysis. A significant positive correlation was observed between prion protein deposition and astrocytosis in all cases and no significant correlation was observed between spongiform change and prion protein deposition. Different patterns of pathology were found to relate to codon 129 genotype; valine homozygosity favoured the targeting of pathology to deep grey matter structures, while methionine homozygosity favoured cortical targeting of pathology. These results provide evidence that prion protein deposition is closely associated with an astrocytic reaction and suggest that codon 129 genotype may influence the pathological phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.