According to this study, best veneering of PEEK with dialog occlusal can be achieved by conditioning with visio.link in combination with the pretreatment of airborne particle abrasion at a pressure of 0.35 MPa.
OBJECTIVE The aim of this study is to investigate the fracture load of different veneered PEEK 3-unit fixed dental prosthesis (FDPs) after different aging regimens. METHODS Congruently anatomically shaped 3-unit FDPs were milled using a master stl-data set and randomly divided into four groups (N = 120, n = 30 per veneering group), which were veneered using different veneering methods: (i) digital veneering with breCAM.HIPC, (ii) conventional veneering with crea.lign, (iii) conventional with crea.lign paste, and (iv) using pre-manufactured veneers visio.lign. The FDPs were then adhesively cemented on a metal abutment and fracture loads were measured in a universal testing machine (1 mm/min) before and after aging (10,000 thermal cycles, 5/55°C). Two-and one-way ANOVA followed by post hoc Scheffé tests were used for data analysis (p < 0.05). RESULTS This investigation showed an influence of the veneering method on the fracture load results independent of the aging level. The highest fracture load was measured for the FDPs with digital veneering (1882 ± 152 N at baseline, 2021 ± 184 N after thermocycling). The remaining groups showed comparable results, and no impact of thermal aging was observed. Digital and conventional veneers showed cracks in the pontic region starting from the connector area as a main failure type after loading, while the pre-manufactured veneers showed predominantly adhesive failures. CONCLUSIONS The digital veneering method showed the highest fracture load resistance. Thermal aging showed no impact on the fracture load of all tested veneered PEEK 3-unit FDPs. CLINICAL RELEVANCE According to this study results, reliable veneering of PEEK FDPs can be achieved with digital veneering. Clinical relevance According to this study results, reliable veneering of PEEK FDPs can be achieved with digital veneering.
The mixed-conducting perovskite oxide Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), given its outstanding oxygen ionic and electronic transport properties, is considered a promising material composition for oxygen transport membranes (OTM) operated at high temperatures.Its long-term stability under operating conditions is, however, still an important issue. Although the incompatibility of BSCF with CO2-containing atmospheres can be avoided by appropriate means (oxyfuel processes in the absence of carbon dioxide), the thermal as well as the chemical stability of BSCF itself are still under thorough investigation.This work is focused on the stability of BSCF in the targeted temperature range for OTM applications (700…900 °C) and in atmospheres with low oxygen contents. Previous studies in literature suggest limited chemical stability below oxygen partial pressures pO2 of around 10-6 bar.By using a coulometric titration method based on a zirconia “oxygen pump” setup, precise control of the oxygen partial pressure pO2 between 1 bar and 10-18 bar was facilitated. Combining electrical measurements on dense ceramic bulk samples performed as a function of pO2 with an XRD phase composition study of single phase BSCF powders subjected to various pO2 treatments, an assessment of the chemical stability of BSCF is facilitated as a function of oxygen partial pressure. It could thus be shown that the pO2 stability limit is considerably lower than previously assumed in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.