This paper presents a control strategy proposed for power maximizing which is a critical mechanism to ensure power track is maximized. Many tracking algorithms have been proposed for this purpose. One of the more commonly used techniques is the incremental conductance method. In this paper, an improved particle swarm optimization- (IPSO-) based MPPT technique for photovoltaic system operating under varying environmental conditions is proposed. The approach of linearly decreasing scheme for weighting factor and cognitive and social parameter is modified. The proposed control scheme can overcome deficiency and accelerate convergence of the IPSO-based MPPT algorithm. The approach is not only capable of tracking the maximum power point under uniform insolation state, but also able to find the maximum power point under fast changing nonuniform insolation conditions. The photovoltaic systematic process with control schemes is created using MATLAB Simulink to verify the effectiveness with several simulations being carried out and then compared with the conventional incremental conductance technique. Lastly, the effectiveness of the intended techniques is proven using real data obtained form previous literature. With the change in insolation and temperature portrait, it produces exceptional MPPT maximization. This shows that optimum performance is achieved using the intended method compared to the typical method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.