Many insects are able to precisely control their jumping movements. Once in the air, the properties of the actual landing site, however, are almost impossible to predict. Falling insects thus have to cope with the situation at impact. In particular, for insects jumping to escape predators, a controlled landing movement appears to be a major evolutionary advantage. A quick recovery into an upright and stable body posture minimizes the time to prepare for the next escape jump. In this study, we used high-speed recordings to investigate the falling and in particular the impact behavior of Schistocerca gregaria locusts, a common model organism for studies on the biomechanics of jumping. Detailed impact analyses of free-falling locusts show that most insects typically crashed onto the substrate. Although freefalling locusts tended to spread their legs, they mostly fell onto the head and thorax first. The presence of wings did not significantly reduce impact speed; however, it did affect the orientation of the body at impact and significantly reduced the time to recover. Our results also show that alive warm locusts fell significantly faster than inactive or dead locusts. This indicates a possible tradeoff between active control versus reduced speed. Interestingly, alive insects also tended to perform a characteristic bending movement of the body at impact. This biomechanical adaptation might reduce the rebound and shorten the time to recover. The adhesive pads also play an important role in reducing the time to recover by allowing the insect to anchor itself to the substrate.
This study shows new impact behaviour for locusts during uncontrolled landing. There 5 are both passive and active mechanisms involved. Different key parameters affect the landing performance. AbstractMany insects are able to precisely control their jumping movements. Previous studies have shown that many falling insects have some degree of control of their landing-orientation, indicating a possible 10 significant biomechanical role of the exoskeleton in air righting mechanisms. Once in the air, the properties of the actual landing site are almost impossible to predict. Falling insects thus have to cope mostly with the situation at impact. What exactly happens at the impact? Do locusts actively 'prepare for landing' while falling, or do they just 'crash' into the substrate?Detailed impact analyses of free falling Schistocerca gregaria locusts show that most insects 15 typically crashed onto the substrate. There was no notable impact-reducing behaviour (protrusion of legs, etc.). Independent of dropping angle, both warm and cooled locusts mostly fell onto head and thorax first. Our results also show that alive warm locusts fell significantly faster than inactive or dead locusts. This indicates a possible tradeoff between active control vs. reduced speed. Looking at the morphology of the head-thorax connection in locusts, we propose that the anterior margin of the 20 pronotum might function as a 'toby collar' structure, reducing the risk of impact damage to the neck joint. Interestingly, at impact alive insects also tended to perform a bending movement of the body. This biomechanical adaptation might reduce the rebound and shorten the time to recover. The adhesive pads also play an important role to reduce the time to recover by anchoring the insect to the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.