[reaction: see text] Cyclic tetrapeptides are an intriguing class of natural products. To synthesize highly strained cyclic tetrapeptides we developed a macrocyclization strategy that involves the inclusion of 2-hydroxy-6-nitrobenzyl (HnB) group at the N-terminus and in the "middle" of the sequence. The N-terminal auxiliary performs a ring closure/ring contraction role, and the backbone auxiliary promotes cis amide bonds to facilitate the otherwise difficult ring contraction. Following this route, the all-L cyclic tetrapeptide cyclo-[Tyr-Arg-Phe-Ala] was successfully prepared.
Cyclic peptides comprise a large and important class of biologically active molecules. They are generally synthesized through amide bond-forming reactions of the C-and N-termini under high dilution conditions. Yields of such processes are highly dependent on the size of the ring being formed and on the particular amino acids of the linear precursor, giving rise to the well-known sequence-dependent effect of cyclization. To overcome this problem, we have developed a peptide cyclization strategy that proceeds through a ring closure/ring contraction process. The linear peptide Ala-Phe-Leu-Pro-Ala, which does not generate monocyclic product under conventional cyclization conditions, was used as a model to probe a range of auxiliaries. This has led to the development of a new photolabile peptide cyclization auxiliary. The 6-nitro-2-hydroxybenzyl group is readily and quantitatively introduced at the N-terminus via a reductive alkylation. Cyclization of the auxiliary-peptide initially proceeds through a cyclic nitrophenyl ester that preorganizes the peptide for lactamization. As the C-and N-termini are in close proximity, lactamization is achieved via an intramolecular O-N acyl transfer step to produce the N-substituted target cycle. The auxiliary is then removed by mild photolysis to produce the target cyclic peptide, cyclo-[Ala-Phe-Leu-Pro-Ala], in good yield. This strategy should find further useful applications in the assembly of libraries of small cyclic peptides.
Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.