Closed-loop state sensitivity [1], [2] is a recently introduced notion that can be used to quantify deviations of the closed-loop trajectory of a robot/controller pair against variations of uncertain parameters in the robot model. While local optimization techniques are used in [1], [2] to generate reference trajectories minimizing a sensitivity-based cost, no global planning algorithm considering this metric to compute collision-free motions robust to parametric uncertainties has yet been proposed. The contribution of this paper is to propose a global control-aware motion planner for optimizing a state sensitivity metric and producing collision-free reference motions that are robust against parametric uncertainties for a large class of complex dynamical systems. Given the prohibitively high computational cost of directly minimizing the state sensitivity using asymptotically optimal sampling-based tree planners, the proposed RRT*-based SAMP planner uses an appropriate steering method to first compute a (near) time-optimal and kinodynamically feasible trajectory that is then locally deformed to improve robustness and decrease its sensitivity to uncertainties. The evaluation performed on planar/full-3D quadrotor UAV models shows that the SAMP method produces low sensitivity robust solutions with a much higher performance than a planner directly optimizing the sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.