The element distribution in the crystal structure of the stable phase of the well-known phase-change material Ge 2 Sb 2 Te 5 was determined at temperatures up to 471 uC using single crystals synthesized by chemical transport reactions. Because of the similar electron count of Sb and Te, the scattering contrast was enhanced by resonant diffraction using synchrotron radiation (beamline ID11, ESRF). A simultaneous refinement on data measured at the K-absorption edges of Sb and Te as well as at additional wavelengths off the absorption edges yielded reliable occupancy factors of each element on each position (a = 4.2257(2) Å, c = 17.2809(18) Å, P3m1, R 1 (overall) = 0.037). The dispersion correction terms Df 9 were refined and match experimental ones obtained from fluorescence spectra by the Kramers-Kronig transform. The structure contains distorted rocksalt-type blocks of nine alternating cation and anion layers, respectively, which are separated by van der Waals gaps between Te atom layers. Ge atoms prefer the cation positions near the center of the rocksalt-type block (occupancy factors Ge 0.60(4) Sb 0.36(2) ), Sb atoms the one near the van der Waals gap (Ge 0.33(7) Sb 0.66 (4) ). Anti-site disorder is not significant. During heating up to 471 uC and subsequent cooling, a reversible structural distortion was observed. The refinements show that with increasing temperature the first pair of anion and cation layers next to the van der Waals gap becomes slightly detached from the block and increasingly resembles a GeTe-type layer. Thus, the difference between interatomic distances in the 3 + 3 cation coordination sphere of the mixed Ge-Sb position next to the gap becomes more pronounced. The element distribution, in contrast, neither changes during the heating experiment nor upon long-time annealing. Thus, the behavior of 9P-Ge 2 Sb 2 Te 5 single crystals is predominantly under thermodynamic control.
In the system Ge-Sn-Sb-Te, there is a complete solid solution series between GeSb2Te4 and SnSb2Te4. As Sn2Sb2Te5 does not exist, Sn can only partially replace Ge in Ge2Sb2Te5; samples with 75% or more Sn are not homogeneous. The joint refinement of high-resolution synchrotron data measured at the K-absorption edges of Sn, Sb and Te combined with data measured at off-edge wavelengths unambiguously yields the element distribution in 21R-Ge(0.6)Sn(0.4)Sb2Te4 and 9P-Ge(1.3)Sn(0.7)Sb2Te5. In both cases, Sb predominantly concentrates on the position near the van der Waals gaps between distorted rocksalt-type slabs whereas Ge prefers the position in the middle of the slabs. No significant antisite disorder is present. Comparable trends can be found in related compounds; they are due to the single-side coordination of the Te atoms at the van der Waals gap, which can be compensated more effectively by Sb(3+) due to its higher charge in comparison to Ge(2+). The structure model of 21R-Ge(0.6)Sn(0.4)Sb2Te4 was confirmed by high-resolution electron microscopy and electron diffraction. In contrast, electron diffraction patterns of 9P-Ge(1.3)Sn(0.7)Sb2Te5 reveal a significant extent of stacking disorder as evidenced by diffuse streaks along the stacking direction. The Seebeck coefficient is unaffected by the Sn substitution but the thermal conductivity drops by a factor of 2 which results in a thermoelectric figure of merit ZT = ~0.25 at 450 °C for both Ge(0.6)Sn(0.4)Sb2Te4 and Ge(1.3)Sn(0.7)Sb2Te5, which is higher than ~0.20 for unsubstituted stable layered Ge-Sb-Te compounds.
This article attempts to present straightforward and easy-to-understand guidelines for the determination of element distribution in compounds lacking X-ray scattering contrast because they have similar electron counts. Different sources of anomalous dispersion correction terms (especially Áf 0 values) are compared with respect to their suitability, reliability and quality. Values from databases are compared with Áf values calculated from fluorescence spectra and those refined from single-crystal diffraction data, using both reference crystals without scattering contrast problems and crystals containing elements with similar electron counts. The number of data sets required to determine reliably the element distribution and the optimum wavelengths to be used are discussed. Joint multiple data set refinements are suitable for the refinement of multiply mixed occupancies of elements lacking scattering contrast. The most straightforward method of obtaining Áf 0 values depends on the complexity of the problem to be solved and the precision required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.