Atmospheric synoptic weather patterns have a significant impact on the concentration, dispersion, and transportation of air pollution in various regions and times around the world. To assess the impact of atmospheric synoptic weather patterns and long-range air mass transportation, we used weather classification techniques from the BP training model and the HYSPLIT model. Our research uncovered four weather conditions linked to PM10 concentration categories ranging from normal to extreme. Weather conditions 3 and 4 are the most significant conditions supporting the occurrence of extreme concentration events that are heavily influenced by anti-cyclones. Despite weather conditions influencing high concentrations, 60% of long-distance air mass transport to Secunda from Mpumalanga province increased to extreme PM10 concentrations. Furthermore, long-term weather shifts have been observed to positively impact reducing the concentration of PM10 extreme events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.