The use of the USNRC codes TRACE and PARCS has been considered for the coupled safety analysis of CANDU reactors. A key element of CANDU simulations is the interactions between thermal-hydraulic and physic phenomena with the CANDU reactor regulating system (RRS). To date, no or limited development has taken place in TRACE-PARCS in this area. In this work, the system thermal-hydraulic code TRACE_Mac1.0 is natively coupled with the core physic code PARCS_Mac1.0, and RRS control is implemented via the exterior communications interface (ECI) in TRACE. ECI is used for coupling the external codes to TRACE, including additional physical models and control system models. In this work, a Python interface to the TRACE ECI library is developed, along with an RRS model written in Python. This coupling was tested using a CANDU-6 IAEA code coupling benchmark and a 900 MW CANDU model for various transients. For the CANDU-6 benchmark, the transients did not include RRS response, however, the TRACE_Mac1.0/PARCS_Mac1.0 coupling and ECI script functionality was compared to the previous benchmark simulations, which utilized external coupling. For the 900 MW CANDU simulations, all aspects of the ECI module and RRS were included. The results from the CANDU-6 benchmark when using the built-in coupling are comparable to those previously achieved using external coupling between the two codes with coupled simulations taking 2x to 3x less execution time. The 900 MW CANDU simulations successfully demonstrate the RRS functionality for the loss of flow events, and the coupled solutions demonstrate adequate performance for figure-of-eight flow instability modeling.
The objective of this study was to evaluate accident-tolerant fuel (ATF) concepts being considered for CANDU reactors. Several concepts, including uranium dioxide/silicon carbide (UO 2 -SiC) composite fuel, dense fuels, microencapsulated fuels, and ATF cladding, were modelled in Serpent 2 to obtain reactor physics parameters, including important feedback parameters such as coolant void reactivity and fuel temperature coefficient. In addition, fuel heat transfer was modelled, and a simple accident model was tested on several ATF cases to compare with UO 2 . Overall, several concepts would require enrichment of uranium to avoid significant burnup penalties, particularly uranium-molybdenum (U-Mo) and fully ceramic microencapsulated (FCM) fuels. In addition, none of the fuel types have a significant advantage over UO 2 in terms of overall accident response or coping time, though U-9Mo fuel melts significantly sooner due to its low melting point. Instead, the different ATF concepts appear to have more modest advantages, such as reduced fission product release upon cladding failure, or reduced hydrogen generation, though a proper risk assessment would be required to determine the magnitude of these advantages to weigh against economic disadvantages. The use of uranium nitride (UN) enriched in 15 N would increase exit burnup for natural uranium, providing a possible economic advantage depending on fuel manufacturing costs.
In CANDU reactors, shim operation is used when the online refuelling capability becomes temporarily unavailable. Adjuster rods, normally in-core to provide flux flattening, are withdrawn in sequence to provide additional reactivity as the fuel is depleted. In a CANDU 900 reactor, up to three of the eight adjuster banks may be withdrawn, with the power derated accordingly. In this study, the shim operation was modelled using a combination of TRACE_Mac1.1, PARCS_Mac1.1, and scripts modelling the reactor regulating system, all running as a single coupled simulation. A driver script simulated the operation as a sequence of steady-state, depletion, and transient models. The results were compared to operational data from a nuclear power plant, evaluating the key figures of merit. The simulation was extended beyond the operational data by reducing the power to 59% FP and withdrawing the remaining adjusters, to observe the behaviour of the simulated reactor for a deeper reactivity-driven transient. Sensitivity cases, including adjuster rod depletion and nuclear data uncertainty, were also evaluated. This study was able to successfully reproduce the general results of the shim operation. Some discrepancies were observed between the simulation and dataset for the duration of the shim, particularly for the one bank out phase of the shim. Several potential causes for the early phase behaviour were identified. When the simulation was extended, the model predicted that a power reduction below 60% FP would lead to xenon poison out when the adjusters were depleted, with the timing sensitive to the adjuster depletion. Nodalisation of the PARCS model also had a significant impact, due to the effect on adjuster nodalisation and its area-of-effect with respect to the actual adjuster locations. Nuclear data uncertainty had a lesser but still noticeable effect. Other parameters, such as the distribution of fuel burnups in the core, only had a small effect on the shim operation.
Polaris is a new lattice physics package, introduced in version 6.2 of the SCALE package. It uses a method of characteristics transport solver and the embedded self-shielding method. It is able to model light water reactor systems with a minimal amount of input. The goal of this project is to include support for CANDU models in Polaris for the next version of SCALE. So far, the model has been implemented and shown to give results with reasonable agreement to other SCALE sequences. This study extends the model to a reflector model, and shows that most quantities agree well with other codes. Some quantities, such as keff and assembly discontinuity factors, are sensitive to meshing. This study also performs a correlation between the TRITON and Polaris sequences using Sampler to perturb the nuclear data. Overall, there is good agreement between the two codes, though coolant void reactivity is only moderately correlated, likely due to the differences in resonance self-shielding methods. Additionally, this work shows that a coarser mesh can be used to speed up uncertainty calculations compared to the mesh used for a best estimate. Finally, this work shows that the mass lumping feature in CENTRM significantly affects heavy water moderated calculations, whether using TRITON or calculating self-shielding factors, and thus should be disabled for heavy water calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.