Glioblastomas (GBMs) contain transformed, self-maintaining, multipotent, tumour-initiating cancer stem cells, whose identification has radically changed our perspective on the physiology of these tumours. Currently, it is unknown whether multiple types of transformed precursors, which display alternative sets of the complement of properties of true cancer stem cells, can be found in a GBM. If different subsets of such cancer stem-like cells (CSCs) do exist, they might represent distinct cell targets, with a differential therapeutic importance, also depending on their characteristics and lineage relationship. Here, we report the presence of two types of CSCs within different regions of the same human GBM. Cytogenetic and molecular analysis shows that the two types of CSCs bear quite diverse tumorigenic potential and distinct genetic anomalies, and, yet, derive from common ancestor cells. This provides critical information to unravel the development of CSCs and the key molecular/genetic components underpinning tumorigenicity in human GBMs.
IntroductionBone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells that can differentiate into different cell lineages and have emerged as a promising tool for cell-targeted therapies and tissue engineering. Their use in a therapeutic context requires large-scale in vitro expansion, increasing the probability of genetic and epigenetic instabilities. Some evidence shows that an organized program of replicative senescence is triggered in human BM-MSCs (hBM-MSCs) on prolonged in vitro expansion that includes alterations in phenotype, differentiation potential, telomere length, proliferation rates, global gene-expression patterns, and DNA methylation profiles.MethodsIn this study, we monitored the chromosomal status, the biologic behavior, and the senescence state of hBM-MSCs derived from eight healthy donors at different passages during in vitro propagation. For a more complete picture, the telomere length was also monitored in five of eight donors, whereas the genomic profile was evaluated in three of eight donors by array-comparative genomic hybridization (array-CGH). Finally, an epigenomic profile was delineated and compared between early and late passages, by pooling DNA of hBM-MSCs from four donors.ResultsOur data indicate that long-term culture severely affects the characteristics of hBM-MSCs. All the observed changes (that is, enlarged morphology, decreased number of cell divisions, random loss of genomic regions, telomere shortening) might be regulated by epigenetic modifications. Gene Ontology analysis revealed that specific biologic processes of hBM-MSCs are affected by variations in DNA methylation from early to late passages.ConclusionsBecause we revealed a significant decrease in DNA methylation levels in hBM-MSCs during long-term culture, it is very important to unravel how these modifications can influence the biologic features of hBM-MSCs to keep track of this organized program and also to clarify the conflicting observations on hBM-MSC malignant transformation in the literature.
Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term “multiforme” describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together the driving force for tumor initiation and development. In order to decipher the common “signature” of the ancestral GSC population, we examined six already characterized GSC lines evaluating their cytogenomic and epigenomic profiles through a multilevel approach (conventional cytogenetic, FISH, aCGH, MeDIP-Chip and functional bioinformatic analysis). We found several canonical cytogenetic alterations associated with GBM and a common minimal deleted region (MDR) at 1p36.31, including CAMTA1 gene, a putative tumor suppressor gene, specific for the GSC population. Therefore, on one hand our data confirm a role of driver mutations for copy number alterations (CNAs) included in the GBM genomic-signature (gain of chromosome 7- EGFR gene, loss of chromosome 13- RB1 gene, loss of chromosome 10-PTEN gene); on the other, it is not obvious that the new identified CNAs are passenger mutations, as they may be necessary for tumor progression specific for the individual patient. Through our approach, we were able to demonstrate that not only individual genes into a pathway can be perturbed through multiple mechanisms and at different levels, but also that different combinations of perturbed genes can incapacitate functional modules within a cellular networks. Therefore, beyond the differences that can create apparent heterogeneity of alterations among GSC lines, there’s a sort of selective force acting on them in order to converge towards the impairment of cell development and differentiation processes. This new overview could have a huge importance in therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.