Although human transthyretin (TTR) is associated with systemic amyloidoses, an anti-amyloidogenic effect that prevents Aβ fibril formation in vitro and in animal models has been observed. Here we studied the ability of three different types of TTR, namely human tetramers (hTTR), mouse tetramers (muTTR) and an engineered monomer of the human protein (M-TTR), to suppress the toxicity of oligomers formed by two different amyloidogenic peptides/proteins (HypF-N and Aβ42). muTTR is the most stable homotetramer, hTTR can dissociate into partially unfolded monomers, whereas M-TTR maintains a monomeric state. Preformed toxic HypF-N and Aβ42 oligomers were incubated in the presence of each TTR then added to cell culture media. hTTR, and to a greater extent M-TTR, were found to protect human neuroblastoma cells and rat primary neurons against oligomer-induced toxicity, whereas muTTR had no protective effect. The thioflavin T assay and site-directed labeling experiments using pyrene ruled out disaggregation and structural reorganization within the discrete oligomers following incubation with TTRs, while confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and hTTR, particularly M-TTR. Moreover, atomic force microscopy (AFM), light scattering and turbidimetry analyses indicated that larger assemblies of oligomers are formed in the presence of M-TTR and, to a lesser extent, with hTTR. Overall, the data suggest a generic capacity of TTR to efficiently neutralize the toxicity of oligomers formed by misfolded proteins and reveal that such neutralization occurs through a mechanism of TTR-mediated assembly of protein oligomers into larger species, with an efficiency that correlates inversely with TTR tetramer stability.
Background: The presence of sequence variants in miRNA genes may influence their processing, expression and binding to target mRNAs. Since single miRNA can have a large number of potential mRNA targets, even minor variations in its expression can have influences on hundreds of putative mRNAs. Methods: Here, we evaluated 101 paired samples (cancer and normal tissues) from non-small cell lung carcinoma (NSCLC) patients to study the genotype distribution of single nucleotide polymorphisms (SNPs) in miR-146a (rs2910164 C-G), miR-149 (rs2292832 C-T), miR-196a2 (rs11614913 C-T) and miR-499 (rs3746444 G-A) and their influence on the expression of respective miRNAs.Results: Relative expression of miR-146a, miR-149 and miR-499 were comparable in NSCLC and in paired control tissues. On the contrary, we clearly detected a significant increase (p-0.001) of miR-196a2 expression in NSCLC. In particular we found a significant association between miR196a2 CC genotype and high expression, whereas TT genotype showed a very low expression in comparison to both CT (p-0.005) and CC patients (p-0.01). We did not find any association between miR-149, miR-196a2 and miR-499 genotype and risk of NSCLC. Conversely, CG genotype of miR-146a appeared associated to an increased risk for NSCLC (ps0.042 and 1.77 OR). Conclusions:Our results seem to demonstrate that sequence variants of miR-196a2 can have an influence on its expression, while miR-146a can have a role in increasing the risk of NSCLC.
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.
Antioxidant activity of melatonin in human erythrocytes, exposed to oxidative stress by cumene hydroperoxide (cumOOH), was investigated. CumOOH at 300 microM progressively oxidized a 1% suspension of red blood cells (RBCs), leading to 100% hemolysis in 180 min. Malondialdehyde and protein carbonyls in the membrane showed a progressive increase, as a result of the oxidative damage to membrane lipids and proteins, reaching peak values after 30 and 40 min, respectively. The membrane antioxidant vitamin E and the cytosolic reduced glutathione (GSH) were totally depleted in 20 min. As a consequence of the irreversible oxidative damage to hemoglobin (Hb), hemin accumulated into the RBC membrane during 40 min. Sodium dodecyl sulfate (SDS) gel electrophoresis of membrane proteins showed a progressive loss of the cytoskeleton proteins and formation of low molecular weight bands and protein aggregates, with an increment of the intensity of the Hb band. Melatonin at 50 microM strongly enhanced the RBC resistance to oxidative lysis, leading to a 100% hemolysis in 330 min. Melatonin had no effect on the membrane lipid peroxidation, nor prevented the consumption of glutathione (GSH) or vitamin E. However, it completely inhibited the formation of membrane protein carbonyls for 20 min and hemin precipitation for 10 min. The electrophoretic pattern provided further evidence that melatonin delayed modifications to the membrane proteins and to Hb. In addition, RBCs incubated for 15 min with 300 microM cumOOH in the presence of 50 microM melatonin were less susceptible, when submitted to osmotic lysis, than cells incubated in its absence. Extraction and high-performance liquid chromatography (HPLC) analysis showed a much more rapid consumption of melatonin during the first 10 min of incubation, then melatonin slowly decreased up to 30 min and remained stable thereafter. Equilibrium partition experiments showed that 15% of the melatonin in the incubation mixture was recovered in the RBC cytosol, and no melatonin was extracted from RBC membrane. However, 35% of the added melatonin was consumed during RBC oxidation. Hydroxyl radical trapping agents, such as dimethylsulfoxide or mannitol, added into the assay in a 1,000 times molar excess, did not vary melatonin consumption, suggesting that hydroxyl radicals were not involved in the indole consumption. Our results indicate that melatonin is actively taken up into erythrocytes under oxidative stress, and is consumed in the defence of the cell, delaying Hb denaturation and release of hemin. RBCs are highly exposed to oxygen and can be a site for radical formation, under pathological conditions, which results in their destruction. A protective role of melatonin should be explored in hemolytic diseases.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline, formation of the extracellular amyloid β (Aβ42) plaques, neuronal and synapse loss, and activated microglia and astrocytes. Extracellular chaperones, which are known to inhibit amyloid fibril formation and promote clearance of misfolded aggregates, have recently been shown to reduce efficiently the toxicity of HypF-N misfolded oligomers to immortalised cell lines, by binding and clustering them into large species. However, the role of extracellular chaperones on Aβ oligomer toxicity remains unclear, with reports often appearing contradictory. In this study we microinjected into the hippocampus of rat brains Aβ42 oligomers pre-incubated for 1h with two extracellular chaperones, namely clusterin and α2-macroglobulin. The chaperones were found to prevent Aβ42-induced learning and memory impairments, as assessed by the Morris Water Maze test, and reduce Aβ42-induced glia inflammation and neuronal degeneration in rat brains, as probed by fluorescent immunohistochemical analyses. Moreover, the chaperones were able to prevent Aβ42 colocalisation with PSD-95 at post-synaptic terminals of rat primary neurons, suppressing oligomer cytotoxicity. All such effects were not effective by adding pre-formed oligomers and chaperones without preincubation. Molecular chaperones have therefore the potential to prevent the early symptoms of AD, not just by inhibiting Aβ42 aggregation, as previously demonstrated, but also by suppressing the toxicity of Aβ42 oligomers after they are formed. These findings elect them as novel neuroprotectors against amyloid-induced injury and excellent candidates for the design of therapeutic strategies against AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.