In severe sepsis, an increase in S100B does not allow the physicians to distinguish patients with severe impairment of consciousness from those with milder derangements or to prognosticate neurological recovery.
The pathogenesis of sepsis associated encephalopathy (SAE) is not yet clear: the blood-brain barrier (BBB) disruption has been indicated among the possible causative mechanisms. S100B, a calcium binding protein, originates in the central nervous system but it can be also produced by extra-cerebral sources; it is passively released from damaged glial cells and neurons; it has limited passage through the BBB. We aimed to demonstrate BBB damage as part of the pathogenesis of SAE by cerebral spinal fluid (CSF) and serum S100B measurements and by magnetic resonance imaging (MRI). This paper describes four septic patients in whom SAE was clinically evident, who underwent MRI and S100B measurement. We have not found any evidence of CSF-S100B increase. Serum S100B increase was found in three out of four patients. MRI did not identify images attributable to BBB disruption but vasogenic edema, probably caused by an alteration of autoregulation, was diagnosed. S100B does not increase in CSF of septic patients; S100B increase in serum may be due to extracerebral sources and does not prove any injury of BBB. MRI can exclude other cerebral pathologies causing brain dysfunction but is not specific of SAE. BBB damage may be numbered among the contributors of SAE, which aetiology is certainly multifactorial: an interplay between the toxic mediators involved in sepsis and the indirect effects of hyperthermia, hypossia and hypoperfusion.
Background: As far as paediatric traumatic brain injury is concerned, it is difficult to quantify the extent of the primary insult, to monitor secondary changes and to predict neurological outcomes by means of the currently used diagnostic tools: physical examination, Glasgow Coma Scale (GCS) score and computed tomography. For this reason, several papers focused on the use of biochemical markers (S100B, neuron-specific enolase) to detect and define the severity of brain damage and predict outcome after traumatic head injury or cardiac arrest. Objective: The aim of this paper is measuring the range of S100B serum concentrations in children affected by traumatic brain injury and describing the possible roles of this protein in the reaction to trauma. Methods: Fifteen children aged 1–15 years were included in the study. Traumatic brain injury severity was defined by paediatric GCS score as mild (9 patients), moderate (2 patients) or severe (4 patients). Blood samples for S100B serum measurement were taken at emergency department admission and after 48 h. Results: The serum S100B concentration was higher in the group of severe trauma patients, who scored the lowest on the GCS at admission, and among them, the highest values were reported by the children with concomitant peripheral lesions. Conclusions: The role of S100B in paediatric traumatic brain injury has not been clarified yet, and the interpretation of its increase when the head trauma is associated with other injuries needs the understanding of the physiopathological mechanisms that rule its release in the systemic circulation. The levels of S100B in serum after a brain injury could be related to the mechanical discharge from a destroyed blood-brain barrier, or they could be due to the active expression by the brain, as a part of its involvement in the systemic inflammatory reaction. Early increase of this protein is not a reliable prognostic index of neurological outcome after pediatric traumatic brain injury, since even very elevated values are compatible with a complete neurological recovery.
We hypothesized that the spread of SARS-CoV-2 in urine during a severe COVID-19 infection may be the expression of the worsening disease evolution. Therefore, the aim of this study was to verify if the COVID-19 disease severity is related to the viral presence in urine samples. We evaluated the clinical evolution in acute COVID-19 patients admitted in the sub-intensive care and intensive care units between 28 of December 2020 and 15th of February 2021 and being positive for SARS-CoV-2 RNA in the respiratory tract, including repeated endotracheal aspirates (ETA), sputum, nasopharyngeal swabs (NPS) and urine. We found that those subjects with SARS-COV-2 in the urine at admittance (8 out of 60 eligible patients) had a more severe disease than those with negative SARS-CoV-2 in urine. Further, they showed an increase in fibrinogen and (C-reactive Protein) CRP serum levels, requiring mechanic ventilation. Of those with positive SARS-CoV-2 in the urine, 50% died. According to our preliminary results, it seems that the presence of SARS-CoV-2 in the urine characterizes patients with a more severe disease and is also related to a higher death rate.
The complex picture of inflammation and coagulation alterations comes to life in acute stroke phases. Increasing evidence points to a strong interaction and extensive crosstalk between the inflammation and coagulation systems: the interest towards this relationship has increased since recent experimental research showed that the early administration of antithrombin III (ATIII) decreases the volume of ischemia in mice and might be neuroprotective, playing an antiinflammatory role.We aimed to establish the extent of the relationship among markers of inflammation (S100B and IL-18) and procoagulant and fibrinolytic markers (ATIII, thrombin-antithrombin III complex (TAT), Fibrin Degradation Products (FDP), D-dimer) in 13 comatose patients affected by focal cerebral ischemia.Plasma levels of TAT, D-dimer and FDP, IL18 and S100B were increased. IL-18 and S100B high serum levels in ischemic patients suggest an early activation of the inflammatory cascade in acute ischemic injury.The basic principles of the interaction between inflammatory and coagulation systems are revised, from the perspective that simultaneous modulation of both coagulation and inflammation, rather than specific therapies aimed at one of these systems could be more successful in stroke therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.