Heterotrophic bacteria play a key role in the degradation of organic matter and carbon cycling in river sediments. These bacterial communities are directly influenced by environmental variables that differ spatially and temporally in rivers. Here, we studied the longitudinal patterns of sediment bacterial community composition and dissolved organic matter utilization under base flow and drought conditions in a Mediterranean river. Our results indicated that sediment microbial communities were affected by dissolved organic matter quality and origin along the river continuum. In headwaters the potential degradation of cellulose and hemicellulose was greater (i.e., higher β-glucosidase and β-xylosidase activities), suggesting higher microbial utilization of allochthonous detritus from terrestrial origin. Conversely, the accumulation and transport of more recalcitrant compounds (i.e., decrease in the recalcitrant index) became potentially relevant downstream. Furthermore, discharge fluctuations had clear effects on bacterial community composition and dissolved organic matter use. The hydrological fragmentation of the river continuum during drought period generated sediment microhabitats dominated by gamma and delta-Proteobacteria, with a greater potential capacity to degrade a wide range of compounds, particularly nitrogen containing moieties. During base flow conditions, we observed a higher occurrence of alpha-Proteobacteria and a greater potential use of more recalcitrant carbon compounds, mostly of terrestrial origin. Overall, our findings suggest an upstream-downstream longitudinal transition of sediment microbial communities that rely on allochthonous to autochthonous dissolved organic matter, and a shift toward autochthonous dissolved organic matter reliance during droughtThis study was supported by the Spanish Ministry of Economy and Competitiveness through projects FLUMED-HOTSPOTS (CGL2011-30151-C02) and FUNSTREAM (CGL2014-58760-C3-R
In a circular economy strategy, waste resources can be used for the biological production of high added-value substances, such as medium chain fatty acids (MCFAs), thus minimising waste and favouring a sustainable process. This study investigates single-stage fermentation processes for the production of MCFAs in a semi-continuous reactor treating the extract of real food waste (FW), without the addition of external electron donors. Two sequential acidogenic fermentation tests were carried out at an organic loading rate (OLR) of 5 and 15 gCOD L−1d−1 with a hydraulic retention time of 4 days and pH controlled at 6 ± 0.2. The highest level of caproate (4.8 g L−1) was observed at OLR of 15 gCOD L−1d−1 with a microbiome mainly composed by lactate-producing Actinomyces, Atopobium, and Olsenella species and caproate-producing Pseudoramibacter. Metagenomic analysis revealed the presence of key enzymes for the production of lactate, such as lactate dehydrogenase and pyruvate ferredoxin oxidoreductase, as well as several enzymes involved in the reverse β-oxidation pathway, thus suggesting the occurrence of a lactate-based chain elongation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.