Background
The noble crayfish (Astacus astacus) is a native European species in decline, with a contracting range and diminishing populations and abundance. Previous studies revealed this species significant genetic diversity in the south-eastern Europe, with populations from the western and the southern part of the Balkan Peninsula being the most divergent. However, sampling of populations from the western part of the Balkans was limited and insufficient for investigating genetic diversity and population divergence for the purpose of conservation planning and management. Thus, the major aim of this study was to fill in this knowledge gap by studying mitochondrial and microsatellite DNA diversity, using 413 noble crayfish from 18 populations from waterbodies in the western part of the Balkan Peninsula.
Methods
Phylogenetic analysis of studied populations and their mitochondrial diversity were studied using COI and 16S sequences and population genetic structure was described using 15 microsatellite loci.
Results
Phylogeographic analysis revealed new divergent mitochondrial haplotypes for the populations in the westernmost part of the Balkan Peninsula in the tributaries of the Sava and Drava rivers. Microsatellite data indicated that these populations harbour an important component of genetic diversity within A. astacus. The results suggest that the western part of the Balkans played an important role as microrefugia during the Pleistocene climate fluctuations, allowing the long term persistence of A. astacus populations in this region. These results will also be important to supporting conservation decision making and planning.
European perch, Perca fluviatilis Linnaeus, 1758 and roach, Rutilus rutilus (Linnaeus, 1758) are the most common species present in mesotrophic and eutrophic lakes throughout Europe. Their biomass, especially in juvenile stages, contributes the most to the fish production of these ecosystems. In Bovan Reservoir, these two species constitute the bulk of the juvenile fish biomass. This study aimed to investigate the feeding composition of these two species in order to evaluate their niche overlap due to the availability of resources during different seasons. Traditional diet analysis indices and Kohonen artificial neural network (i.e., a self-organizing map, SOM) were used to investigate the diet of 158 individuals of both species and evaluate their food niche overlap. The indicator value (IndVal) was applied to identify indicator food categories based on which the contents of their alimentary tracts were grouped first into neurons and then into clusters on the SOM. Our results showed that juvenile fish used zooplankton and benthic prey in their diet. Roach often fed on nonanimal prey, while perch of age 0+ used fishes in the diet. Additionally, four clusters of neurons were isolated on the SOM output network. The distribution of perch and roach alimentary tracts in neurons indicated no high degree of competition between them. While diet analyses indices show which food category is generally important in specimensʼ diet, the SOM recognizes those specimens and arranges them together into the same or adjacent neurons based on dominant prey. Understanding fish feeding habits is critical for the development of conservation and management plans. Since Bovan is a eutrophic reservoir, our knowledge of fish feeding habits needs to be considered for stocking strategies in the future.
This research aimed to investigate the quality of drinking water from the rural area of village Pajsijević (Šumadija, central Serbia). The water is consumed as raw since it is not purified or chlorinated before consumption. The water was collected at three sampling points – in the spring of Kotlenik Mountain stream (W1 sample), in the local reservoir (W2 sample), and from the tap (W3 sample). Also, the sediment samples (soil and sand) were analyzed, too. The health risks related to the presence and concentration of some major and trace elements (Ca, Cr, Cu, Fe, Mg, Mn, Ni, Zn) and N, NO, NN3, NH4, P, P2O5, and PO4 were evaluated. Additionally, the presence and the number of total coliform bacteria and Escherichia coli (as an indicator of fecal contamination) were evaluated. The concentrations of analyzed major and trace elements in all water samples were below those at which toxic effects may occur. The exception was the concentrations of Fe (2.02 – 2012 mg/L), which were higher than is allowed. The origin of Fe in water is from sediment (soil and sand), which also showed high content of Fe (3006.0 mg/g and 2229.9 mg/g, respectively). The results of the Colorimetric test indicated the presence of coliform bacteria as well as the presence of E. coli in all water samples. Further research needs to include characterization of isolated coliform bacteria and serological investigation of E. coli strains in order to evaluate the risks of consumption related to waterborne illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.