The ultrahigh‐pressure pyrope whiteschists from the Brossasco‐Isasca Unit of the Southern Dora‐Maira Massif represent metasomatic rocks originated at the expense of post‐Variscan granitoids by the influx of fluids along shear zones. In this study, geochemical, petrological and fluid‐inclusion data, correlated with different generations of pyrope‐rich garnet (from medium, to very‐coarse‐grained in size) allow constraints to be placed on the relative timing of metasomatism and sources of the metasomatic fluid. Geochemical investigations reveal that whiteschists are strongly enriched in Mg and depleted in Na, K, Ca and LILE (Cs, Pb, Rb, Sr, Ba) with respect to the metagranite. Three generations of pyrope, with different composition and mineral inclusions, have been distinguished: (i) the prograde Prp I, which constitutes the large core of megablasts and the small core of porphyroblasts; (ii) the peak Prp II, which constitutes the inner rim of megablasts and porphyroblasts and the core of small neoblasts; and (iii) the early retrograde Prp III, which locally constitutes an outer rim. Two generations of fluid inclusions have been recognized: (i) primary fluid inclusions in prograde kyanite that represent a NaCl‐MgCl2‐rich brine (6–28 wt% NaCleq with Si and Al as other dissolved cations) trapped during growth of Prp I (type‐I fluid); (ii) primary multiphase‐solid inclusions in Prp II that are remnants of an alumino‐silicate aqueous solution, containing Mg, Fe, alkalies, Ca and subordinate P, Cl, S, CO32‐, LILE (Pb, Cs, Sr, Rb, K, LREE, Ba), U and Th (type‐II fluid), at the peak pressure stage. We propose a model that illustrates the prograde metasomatic and metamorphic evolution of the whiteschists and that could also explain the genesis of other Mg‐rich, alkali‐poor schists of the Alps. During Alpine metamorphism, the post‐Variscan metagranite of the Brossasco‐Isasca Unit experienced a prograde metamorphism at HP conditions (stage A: ∼1.6 GPa and ≤ 600 °C), as indicated by the growth of an almandine‐rich garnet in some xenoliths. At stage B (1.7–2.1 GPa and 560–590 °C), the influx of external fluids, originated from antigorite breakdown in subducting oceanic serpentinites, promoted the increase in Mg and the decrease of alkalies and Ca in the orthogneiss toward a whiteschist composition. During stage C (2.1 < P < 2.8 GPa and 590 < T < 650 °C), the metasomatic fluid influx coupled with internal dehydration reactions involving Mg‐chlorite promoted the growth of Prp I in the presence of the type‐I MgCl2‐brine. At the metamorphic peak (stage D: 4.0–4.3 GPa and 730 °C), Prp II growth occurred in the presence of a type–II alumino‐silicate aqueous solution, mostly generated by internal dehydration reactions involving phlogopite and talc. The contribution of metasomatic external brines at the metamorphic climax appears negligible. This fluid, showing enrichment in LILE and depletion in HFSE, could represent a metasomatic agent for the supra‐subduction mantle wedge.
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.
During the fi rst stage of the Late Miocene Messinian salinity crisis (5.97-5.60 Ma), deposition of sulfates (the Primary Lower Gypsum) occurred in shallow silled peripheral subbasins of the Mediterranean undergoing restricted water exchange with the Atlantic Ocean. Fluid inclusions in Messinian selenite crystals from the Piedmont Basin (northwest Italy) have surprisingly low salinities (average of 1.6 wt% NaCl equivalent), suggesting that parent waters were depleted in Na+ and Cl- compared to modern seawater. Modern gypsum from a Mediterranean salt work, in contrast, contains fl uid inclusions with elevated salinities that match the normal evaporation trend expected for seawater. The salinity data indicate that the Messinian sulfate deposits from the Piedmont Basin formed from hybrid parent waters. seawater mixed with Ca2+ and SO4 2- enriched freshwaters that dissolved coeval marginal marine gypsum. Such mixed parent waters and complex recycling processes should be taken into account when explaining the genesis of other Messinian gypsum deposits across the Mediterranean Basin
The Brossasco-Isasca Unit (BIU) of the southern Dora-Maira Massif (DMM), Western Alps, is one of the most studied ultra-high pressure (UHP) units in the world. However, the interpretation of UHP metamorphism in the BIU is still a highly debated and challenging issue. The structural and tectonometamorphic setting of the southern DMM is described in the literature as a tectonic "sandwich", with the UHP unit in the middle, bounded by two high-pressure (HP) eclogitic units in the footwall (the San Chiaffredo Unit, SCU) and hanging wall (the Rocca Solei Unit, RSU), respectively. These three units are in turn sandwiched between two blueschist-facies units (the Pinerolo Unit, PU, at the bottom, and the Dronero-Sampeyre Unit, DSU, at the top). In contrast to the well-constrained P-T evolution of the BIU, peak P-T conditions for its bounding HP units are poorly constrained, most studies dating back to over 20 years ago and mostly relying on conventional thermobarometric methods. This study aims to update our knowledge about the P-T evolution experienced by the whole tectonometamorphic package of the southern DMM. For the first time, peak P-T conditions and prograde evolution for the five units (PU, SCU, BIU, RSU, DSU) forming the southern DMM tectonic "sandwich" are estimated using the same, internally consistent and therefore comparable, modern thermobarometric approaches. The study focuses on metapelites (i.e., garnet-bearing phengitic micaschists) and combines multi-equilibrium thermobarometry (Average PT) with the P-T pseudosection approach. Our results demonstrate that most of the southern DMM nappe stack (i.e., SCU, RSU and also the PU, that was originally considered as a blueschist-facies unit) experienced eclogitefacies metamorphism under similar peak P-T conditions (500-520°C, 20-24 kbar), and followed the same prograde path, suggesting similar burial mechanisms. The UHP BIU followed an early prograde evolution similar to that of the other eclogitic units of the southern DMM tectonic "sandwich". The attainment of UHP peak conditions occurred through an earlier steep, almost isothermal increase in pressure and a later increase in temperature. The DSU is the only unit of the southern DMM nappe stack that did not experience eclogite-facies metamorphism (peak metamorphism at blueschist-facies conditions: 450-470 °C, 17-18 kbar) and it is separated from the eclogitic units by a shear zone (the Valmala Shear Zone), whose interpretation requires further studies. These new data represent the inescapable starting point for any conceptual model aiming for a deeper understanding of the subduction/exhumation processes of UHP Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation continental units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.