Enterococcus faecium E35048, a bloodstream isolate from Italy, was the first strain where the oxazolidinone resistance gene optrA was detected outside China. The strain was also positive for the oxazolidinone resistance gene cfr. WGS analysis revealed that the two genes were linked (23.1 kb apart), being co-carried by a 41,816-bp plasmid that was named pE35048-oc. This plasmid also carried the macrolide resistance gene erm(B) and a backbone related to that of the well-known Enterococcus faecalis plasmid pRE25 (identity 96%, coverage 65%). The optrA gene context was original, optrA being part of a composite transposon, named Tn6628, which was integrated into the gene encoding for the ζ toxin protein (orf19 of pRE25). The cfr gene was flanked by two ISEnfa5 insertion sequences and the element was inserted into an lnu(E) gene. Both optrA and cfr contexts were excisable. pE35048-oc could not be transferred to enterococcal recipients by conjugation or transformation. A plasmid-cured derivative of E. faecium E35048 was obtained following growth at 42°C, and the complete loss of pE35048-oc was confirmed by WGS. pE35048-oc exhibited some similarity but also notable differences from pEF12-0805, a recently described enterococcal plasmid from human E. faecium also co-carrying optrA and cfr; conversely it was completely unrelated to other optrA- and cfr-carrying plasmids from Staphylococcus sciuri. The optrA-cfr linkage is a matter of concern since it could herald the possibility of a co-spread of the two genes, both involved in resistance to last resort agents such as the oxazolidinones.
Skin and chronic wound infections are an increasing and urgent health problem worldwide. Their management is difficult and the development of antibiotic resistance by both planktonic and biofilm-associated bacteria necessitates the use of alternative treatments. The purpose of this study was to compare the antimicrobial activity of four honeys from different floral and geographical origins: Melipona beecheii honey (Cuba) and three Apis mellifera honeys [Manuka honey (New Zealand), A. mellifera honey (Cuba), and African honey (Kenya)]. The physicochemical parameters were within the ranges reported for these honeys and M. beecheii honey stood out due to its acidic character. An agar incorporation technique was used to determine the minimum active dilution of each honey against 52 clinical isolates (34 Gram-positive, 17 Gram-negative, and 1 Candida albicans). The antibiofilm activity of honeys was tested by assessing their ability to inhibit biofilm formation and to disrupt preformed biofilms. Overall, M. beecheii honey had the highest antimicrobial and antibiofilm activity, although a marked disruption in preformed biofilms was shared by all tested honeys. Structural changes induced by M. beecheii honey on Staphylococcus aureus and Pseudomonas aeruginosa cells were observed by transmission electron microscopy suggesting that this honey has a potent antimicrobial action and may be an excellent candidate for the development of topical preparations for the treatment of infected wounds.
One hundred forty-five florfenicol-resistant enterococci, isolated from swine fecal samples collected from 76 pig farms, were investigated for the presence of optrA, cfr, and poxtA genes by PCR. Thirty florfenicol-resistant Enterococcus isolates had at least one linezolid resistance gene. optrA was found to be the most widespread linezolid resistance gene (23/30), while cfr and poxtA were detected in 6/30 and 7/30 enterococcal isolates, respectively. WGS analysis also showed the presence of the cfr(D) gene in Enterococcus faecalis (n = 2 isolates) and in Enterococcus avium (n = 1 isolate). The linezolid resistance genes hybridized both on chromosome and plasmids ranging from ~25 to ~240 kb. Twelve isolates were able to transfer linezolid resistance genes to enterococci recipient. WGS analysis displayed a great variability of optrA genetic contexts identical or related to transposons (Tn6628 and Tn6674), plasmids (pE035 and pWo27-9), and chromosomal regions. cfr environments showed identities with Tn6644-like transposon and a region from p12-2300 plasmid; cfr(D) genetic contexts were related to the corresponding region of the plasmid 4 of Enterococcus faecium E8014; poxtA was always found on Tn6657. Circular forms were obtained only for optrA- and poxtA-carrying genetic contexts. Clonality analysis revealed the presence of E. faecalis (ST16, ST27, ST476, and ST585) and E. faecium (ST21) clones previously isolated from humans. These results demonstrate a dissemination of linezolid resistance genes in enterococci of swine origin in Central Italy and confirm the spread of linezolid resistance in animal settings.
Ceftobiprole is a fifth-generation cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA). One-year surveillance at the Regional Hospital of Ancona (Italy) disclosed a 12% ceftobiprole resistance rate (12/102 isolates; MIC, ≥4 mg/liter). Epidemiological characterization demonstrated that the resistant isolates all belonged to different clones. Penicillin-binding protein (PBP) analysis showed substitutions in all PBPs and a novel insertion in PBP2a. The mecB and mecC genes were not detected. Ceftobiprole susceptibility screening is essential to avoid therapeutic failure and the spread of ceftobiprole-resistant strains.
Objectives To investigate the genetic elements and the transferability of linezolid resistance genes in three enterococci co-carrying cfr(D) and poxtA2 isolates from manure of a swine farm in central Italy. Methods Two Enterococcus faecalis isolates and one Enterococcus casseliflavus isolate carrying both cfr(D) and poxtA genes were tested for their susceptibility to florfenicol, chloramphenicol, linezolid, tedizolid, tetracycline and vancomycin. Linezolid resistance genes transfer (filter mating), localization (S1-PFGE/hybridization), genetic elements and relatedness between isolates (WGS) were analysed. Results Two E. faecalis isolates and one E. casseliflavus isolate carried the cfr(D) gene and the recently described poxtA2 variant. In the three enterococci, cfr(D) and poxtA2 were co-located on a 33 480 bp plasmid, pV386, 95%–100% identical (coverage 84%) to the Tn6349 transposon of Staphylococcus aureus AOUC-0915. In all isolates, both genes also showed a chromosomal location. Same sequence identities were found from the comparison with currently known poxtA2 genetic elements. In the plasmid pV386, poxtA2 gene was not bounded by two IS1216, as described in pIB-BOL, but closely associated to the cfr(D) and fexA genes. pV386 was always transferred by filter mating to Enterococcus faecium 64/3 recipient. Conclusions The occurrence of the pV386 plasmid in E. faecalis and E. casseliflavus from swine manure is of great concern and highlights the need for control measures to contain its spread to other enterococcal species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.