Prostate cancer (PCa) is a multifactorial disease with an unclear etiology. Due to its high prevalence, long latency, and slow progression, PCa is an ideal target for chemoprevention strategies. Many research studies have highlighted the positive effects of natural flavonoids on chronic diseases, including PCa. Different classes of dietary flavonoids exhibit anti-oxidative, anti-inflammatory, anti-mutagenic, anti-aging, cardioprotective, anti-viral/bacterial and anti-carcinogenic properties. We overviewed the most recent evidence of the antitumoral effects exerted by dietary flavonoids, with a special focus on their epigenetic action in PCa. Epigenetic alterations have been identified as key initiating events in several kinds of cancer. Many dietary flavonoids have been found to reverse DNA aberrations that promote neoplastic transformation, particularly for PCa. The epigenetic targets of the actions of flavonoids include oncogenes and tumor suppressor genes, indirectly controlled through the regulation of epigenetic enzymes such as DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC). In addition, flavonoids were found capable of restoring miRNA and lncRNA expression that is altered during diseases. The optimization of the use of flavonoids as natural epigenetic modulators for chemoprevention and as a possible treatment of PCa and other kinds of cancers could represent a promising and valid strategy to inhibit carcinogenesis and fight cancer.
Background. Green tea catechins are known to promote mitochondrial function, and to modulate gene expression and signalling pathways that are altered in the diabetic heart. We thus evaluated the effectiveness of the in vivo administration of a standardized green tea extract (GTE) in restoring cardiac performance, in a rat model of early streptozotocin-induced diabetes, with a focus on the underlying mechanisms. Methods. Twenty-five male adult Wistar rats were studied: the control (n = 9), untreated diabetic animals (n = 7) and diabetic rats subjected to daily GTE administration for 28 days (n = 9). Isolated ventricular cardiomyocytes were used for ex vivo measurements of cell mechanics and calcium transients, and molecular assays, including the analysis of functional protein and specific miRNA expression. Results. GTE treatment induced an almost complete recovery of cardiomyocyte contractility that was markedly impaired in the diabetic cells, by preserving mitochondrial function and energy availability, and modulating the expression of the sarcoplasmic reticulum calcium ATPase and phospholamban. Increased Sirtuin 1 (SIRT1) expression and activity substantially contributed to the observed cardioprotective effects. Conclusions. The data supported the hypothesis that green tea dietary polyphenols, by targeting SIRT1, can constitute an adjuvant strategy for counteracting the initial damage of the diabetic heart, before the occurrence of diabetic cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.