This work aims to emphasize that the magnetic response of single-domain magnetic nanoparticles (NPs) is driven by the NPs' internal structure, and the NP size dependencies of magnetic properties are overestimated. The relationship between the degree of the NPs' crystallinity and magnetic response is unambiguously demonstrated in eight samples of uniform maghemite/magnetite NPs and corroborated with the results obtained for about 20 samples of spinel ferrite NPs with different degrees of crystallinity. The NP samples were prepared by the thermal decomposition of an organic iron precursor subjected to varying reaction conditions, yielding variations in the NP size, shape and relative crystallinity. We characterized the samples by using several complementary methods, such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and Mössbauer spectroscopy (MS). We evaluated the NPs' relative crystallinity by comparing the NP sizes determined from TEM and PXRD and further inspecting the NPs' internal structure and relative crystallinity by using HR-TEM. The results of the structural characterization were put in the context of the NPs' magnetic response. In this work, the highest saturation magnetization (M) was measured for the smallest but well-crystalline NPs, while the larger NPs exhibiting worse crystallinity revealed a lower M. Our results clearly demonstrate that the NP crystallinity level that is mirrored in the internal spin order drives the specific magnetic response of the single-domain NPs.
In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.
Monodisperse maghemite nanoparticles with diameter ranging from 7 to 20 nm were examined by the In-field Mössbauer Spectroscopy (IFMS) in varying external magnetic field up to 6 T. Surprisingly, the small-sized particles (7 nm) exhibit nearly no spin canting in contrast to the larger particles with lower surface-to-volume ratio. We demonstrate that the observed phenomenon is originated by lower relative crystallinity of the larger particles with different internal structure. Hence, the persistence of the 2nd and 5th absorption lines in the IFMS cannot be unambiguously assigned to the surface spins.
Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.
This chapter focuses on the relationship between structural and magnetic properties of cubic spinel ferrite MFe 2 O 4 (M = Mg, Mn, Fe, Co, Ni, Cu and Zn) nanoparticles (NPs). First, a brief overview of the preparation methods yielding well-developed NPs is given. Then, key parameters of magnetic NPs representing their structural and magnetic properties are summarized with link to the relevant methods of characterization. Peculiar features of magnetism in real systems of the NPs at atomic, single-particle, and mesoscopic level, respectively, are also discussed. Finally, the significant part of the chapter is devoted to the discussion of the structural and magnetic properties of the NPs in the context of the relevant preparation routes. Future outlooks in the field profiting from tailoring of the NP properties by doping or design of core-shell spinel-only particles are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.