Colorectal cancer (CRC) is a genetic disease governed by clonal evolution1. Genotyping CRC tissue is employed for therapeutic purposes but this approach has significant limitations. A tissue sample represents a single snapshot in time, is subjected to selection bias due to tumor heterogeneity, and can be difficult to obtain. We exploited circulating DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during therapies with the anti-EGFR antibodies cetuximab or panitumumab. We identified genomic alterations in KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1 in ctDNA of patients with primary or acquired resistance to EGFR blockade. Mutant RAS clones, which rise in blood during EGFR blockade, decline upon withdrawal of anti-EGFR antibodies indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells, which had acquired resistance to cetuximab, reveals that upon antibody withdrawal KRAS clones decay, while the population regains drug sensitivity. ctDNA profiles of patients who benefit from multiple challenging with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results reveal that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of re-challenge therapies based on EGFR blockade.
ECENT RETROSPECTIVE CORrelative analyses of metastatic colorectal cancer trials indicate that patients with KRAS-mutated tumors (NCBI Entrez Gene 3845) do not benefit from the anti-epidermal growth factor receptor (EGFR) monoclonal antibodies cetuximab and panitumumab. 1 These retrospective analyses were performed independently, and for each analysis, KRAS wild-type vs mutant were studied grouping codons 12 and 13 mutations together, without subgroup analysis. Health authorities in the United States and Europe have indicated that patients with KRAS codon 12-or KRAS codon 13-mutated tumors should not receive cetuximab or panitumumab. 2-4 However, indications exist that not all KRAS mutations are equal in their biological characteristics. First, the pattern of KRAS mutations is tumor-type spe-Author Affiliations are listed at the end of this article.
Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.
The development of molecularly targeted anticancer agents relies on large panels of tumourspecific preclinical models closely recapitulating the molecular heterogeneity observed in patients. Here we describe the mutational and gene expression analyses of 151 colorectal cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcriptional subtypes, previously defined in patients, is represented in this cell line compendium. Transcriptional outlier analysis identifies RAS/BRAF wild-type cells, resistant to EGFR blockade, functionally and pharmacologically addicted to kinase genes including ALK, FGFR2, NTRK1/2 and RET. The same genes are present as expression outliers in CRC patient samples. Genomic rearrangements (translocations) involving the ALK and NTRK1 genes are associated with the overexpression of the corresponding proteins in CRC specimens. The approach described here can be used to pinpoint CRCs with exquisite dependencies to individual kinases for which clinically approved drugs are already available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.