The kinetics of the reactions of 1,2-diaza-1,3-dienes 1 with acceptor-substituted carbanions 2 have been studied at 20 °C. The reactions follow a second-order rate law, and can be described by the linear free energy relationship log k(20 °C)=s(N+E) [Eq. (1)]. With Equation (1) and the known nucleophile-specific parameters N and s for the carbanions, the electrophilicity parameters E of the 1,2-diaza-1,3-dienes 1 were determined. With E parameters in the range of -13.3 to -15.4, the electrophilic reactivities of 1a-d are comparable to those of benzylidenemalononitriles, 2-benzylideneindan-1,3-diones, and benzylidenebarbituric acids. The experimental second-order rate constants for the reactions of 1a-d with amines 3 and triarylphosphines 4 agreed with those calculated from E, N, and s, indicating the applicability of the linear free energy relationship [Eq. (1)] for predicting potential nucleophilic reaction partners of 1,2-diaza-1,3-dienes 1. Enamines 5 react up to 10(2) to 10(3) times faster with compounds 1 than predicted by Equation (1), indicating a change of mechanism, which becomes obvious in the reactions of 1 with enol ethers.
In situ derived acyclic and cyclic 1,2-diaza-1,3-dienes (DDs) were engaged in interceptive [4 + 1] annulation strategy with diazo esters (DEs). The catalytic activity of inexpensive copper(II) chloride allows the direct synthesis of mono-, bi-, and tricyclic 4,5-dihydropyrazole-5-carboxylic acid derivatives in a process that circumvents the use of an anhydrous and inert atmosphere.
1,2-Diaza-1,3-dienes (DDs) react as Michael acceptors with primary amines to afford α-aminohydrazone derivatives that were in situ coupled with isocyanates. Intramolecular ring closure of the asymmetric urea derivatives so formed allows for a selectively substituted hydantoin ring to be obtained. The hydrazone side chain introduced by the conjugated heterodiene system at the 5-position of the heterocycle represents a valuable functionality for accessing novel 5-acyl derivatives difficult to obtain by other methods.
Abstract:The zinc(II) triflate-catalyzed synthesis of highly functionalized pyrroles is described. The sequence involves the preliminary preparation of aaminohydrazones by Michael addition of primary amines to 1,2-diaza-1,3-dienes. The treatment of these intermediates with dialkyl acetylenedicarboxylates produces a-(N-enamino)-hydrazones that are converted into the corresponding pyrroles. The substituents on the carbon in position four of 1,2-diaza-1,3-dienes drive the regioselectivity of the ring closure process. Starting from 4-aminocarbonyl-1,2-diaza-1,3-dienes only dialkyl 1-substituted 5-aminocarbonyl-1H-pyrrole-2,3-dicarboxylates are achieved by Lewis acid-catalyzed ring closure. A screening of several Lewis/Brønsted acid catalysts is performed. Zinc(II) triflate is the most efficient catalyst. Under similar reaction conditions, employing 4-alkoxycarbonyl-1,2-diaza-1,3-dienes, only 4-hydroxy-1H-pyrrole-2,3-dicarboxylates are synthesized. These latter reactions can be accomplished regioselectively also in one pot. Using 4-aminocarbonyl-1,2-diaza-1,3-dienes, diamines and dialkyl acetylenedicarboxylates the sequence provides the corresponding a,w-di(Npyrrolyl)alkanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.