The insect order Lepidoptera (butterflies and moth) represents the largest group of organisms with ZW/ZZ sex determination. While the origin of the Z chromosome predates the evolution of the Lepidoptera, the W chromosomes are considered younger, but their origin is debated. To shed light on the origin of the lepidopteran W, we here produce chromosome-level genome assemblies for the butterfly Pieris mannii, and compare the sex chromosomes within and between P. mannii and its sister species P. rapae. Our analyses clearly indicate a common origin of the W chromosomes of the two Pieris species, and reveal similarity between the Z and W in chromosome sequence and structure. This supports the view that the W in these species originates from Z-autosome fusion rather than from a redundant B chromosome. We further demonstrate the extremely rapid evolution of the W relative to the other chromosomes and argue that this may preclude reliable conclusions about the origins of W chromosomes based on comparisons among distantly related Lepidoptera. Finally, we find that sequence similarity between the Z and W chromosomes is greatest toward the chromosome ends, perhaps reflecting selection for the maintenance of recognition sites essential to chromosome segregation. Our study highlights the utility of long-read sequencing technology for illuminating chromosome evolution.
The insect order Lepidoptera (butterflies and moth) represents the largest group of organisms with ZW/ZZ sex determination. While the origin of the Z chromosome predates the evolution of the Lepidoptera, the W chromosome is considered younger, but its origin is debated. To shed light on the origin of the lepidopteran W, we here produce chromosome-level genome assemblies for the butterfly Pieris mannii, and compare the sex chromosomes within and between P. mannii and its sister species P. rapae. Our analyses clearly indicate a common origin of the W chromosomes of the two Pieris species, and reveal similarity between the Z and W in chromosome sequence and structure. This supports the view that the W originates from Z-autosome fusion rather than from a redundant B chromosome. We further demonstrate the extremely rapid evolution of the W relative to the other chromosomes and argue that this may preclude reliable conclusions about the origin of the W based on comparisons among distantly related Lepidoptera. Finally, we find that sequence similarity between the Z and W chromosomes is greatest toward the chromosome ends, perhaps reflecting selection for the maintenance of recognition sites essential to chromosome segregation. Our study highlights the utility of long-read sequencing technology for illuminating chromosome evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.