BackgroundTranscutaneous supraorbital nerve stimulation (tSNS) with the Cefaly® device was recently found superior to sham stimulation for episodic migraine prevention in a randomized trial. Its safety and efficiency in larger cohorts of headache sufferers in the general population remain to be determined.The objective of this study was to assess the satisfaction with the Cefaly® device in 2,313 headache sufferers who rented the device for a 40-day trial period via Internet.MethodsOnly subjects using specific anti-migraine drugs, and thus most likely suffering from migraine, were included in the survey. Adverse events (AEs) and willingness to continue tSNS were monitored via phone interviews after the trial period. A built-in software allowed monitoring the total duration of use and hence compliance in subjects who returned the device to the manufacturer after the trial period.ResultsAfter a testing period of 58.2 days on average, 46.6% of the 2,313 renters were not satisfied and returned the device, but the compliance check showed that they used it only for 48.6% of the recommended time. The remaining 54.4% of subjects were satisfied with the tSNS treatment and willing to purchase the device. Ninety-nine subjects out of the 2,313 (4.3%) reported one or more AEs, but none of them was serious. The most frequent AEs were local pain/intolerance to paresthesia (47 subjects, i.e. 2.03%), arousal changes (mostly sleepiness/fatigue, sometimes insomnia, 19 subjects, i.e. 0.82%), headache after the stimulation (12 subjects, i.e. 0.52%). A transient local skin allergy was seen in 2 subjects, i.e. 0.09%.ConclusionsThis survey of 2,313 headache sufferers in the general population confirms that tSNS with is a safe and well-tolerated treatment for migraine headaches that provides satisfaction to a majority of patients who tested it for 40 days. Only 4.3% of subjects reported AEs, all of them were minor and fully reversible.
The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared to controls, with differences predominantly in the left amygdala in the pre-treated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy controls from Time 1 to Time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity following an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response.
BackgroundMedication-overuse headache (MOH) is a frequent, disabling disorder. Despite a controversial pathophysiology convincing evidence attributes a pivotal role to central sensitization. Most patients with MOH initially have episodic migraine without aura (MOA) characterized interictally by an absent amplitude decrease in cortical evoked potentials to repetitive stimuli (habituation deficit), despite a normal initial amplitude (lack of sensitization). Whether central sensitization alters this electrophysiological profile is unknown. We therefore sought differences in somatosensory evoked potential (SEP) sensitization and habituation in patients with MOH and episodic MOA.MethodsWe recorded median-nerve SEPs (3 blocks of 100 sweeps) in 29 patients with MOH, 64 with MOA and 42 controls. Episodic migraineurs were studied during and between attacks. We measured N20-P25 amplitudes from 3 blocks of 100 sweeps, and assessed sensitization from block 1 amplitude, and habituation from amplitude changes between the 3 sequential blocks.ResultsIn episodic migraineurs, interictal SEP amplitudes were normal in block 1, but thereafter failed to habituate. Ictal SEP amplitudes increased in block 1, then habituated normally. Patients with MOH had larger-amplitude block 1 SEPs than controls, and also lacked SEP habituation. SEP amplitudes were smaller in triptan overusers than in patients overusing nonsteroidal anti-inflammatory drugs (NSAIDs) or both medications combined, lowest in patients with the longest migraine history, and highest in those with the longest-lasting headache chronification.Conclusions In patients with MOH, especially those overusing NSAIDs, the somatosensory cortex becomes increasingly sensitized. Sensory sensitization might add to the behavioral sensitization that favors compulsive drug intake, and may reflect drug-induced changes in central serotoninergic transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.