This article presents a method for measuring the geometry of crane rails with terrestrial laser scanning (TLS). Two sets of crane rails were divided into segments, their planes were adjusted, and the characteristic rail lines were defined. We used their profiles to define the positional and altitude deviations of the rails, the span and height difference between the two rails, and we also verified that they complied with the Eurocode 3 standard. We tested the method on crane rails at the hydroelectric power plant in Krško and the thermal power plant in Brestanica. We used two scanning techniques: “pure” TLS (Riegel VZ-400) and “hybrid” TLS (Leica MS50) scanning. This article’s original contribution lies in the detailed presentation of the computations used to define the characteristic lines of the rails without using the numeric procedures from existing software packages. We also analysed the influence of segment length and point density on the rail geometry results, and compared the two laser scanning techniques. We also compared the results obtained by terrestrial laser scanning with the results obtained from the classic polar method, which served as a reference point for its precision.
Geodetske metode omogočajo določanje recentnih tektonskih premikov zemeljske skorje, lokalnih premikov zemeljske površine, kot so plazovi, posedanje, ugrezanje zaradi rudarjenja, izsuševanja, črpanja podtalnice, ter ugotavljanje premikov in deformacij zgrajenih objektov, kot so prometnice, mostovi, vodne pregrade in strojne konstrukcije. Na podlagi premikov točk
TLS is nowadays often used for deformation monitoring. As it is not able to scan identical points in different time epochs, mathematical models of objects derived from point clouds have to be used. The most common geometric form to describe built objects is a plane, which can be described by four parameters. In this study, we aimed to find out how small changes in the parameters of the plane can be detected by TLS. We aimed to eliminate all possible factors that influence the scanning. Then, we shifted and tilted a finite physical representation of a plane in a controlled way. After each controlled change, the board was scanned several times and the parameters of the plane were calculated. We used two different types of scanning devices and compared their performance. The changes in the plane parameters were compared with the actual change values and statistically tested. The results show that TLS detects shifts in the millimetre range and tilts of 150″ (for a 1 m plane). A robotic total station can achieve twice the precision of TLS despite lower density and slower performance. For deformation monitoring, we strongly recommend repeating each scan several times (i) to check for gross errors and (ii) to obtain a realistic precision estimate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.