The present study aimed to evaluate the impact of polycyclic aromatic hydrocarbons (PAHs) produced by multiple emission sources on prokaryotic communities in sediments chronically affected by anthropogenic pressures. In this context, surface sediments were investigated in three Mediterranean touristic ports over three sampling periods and in different port sectors. The levels of 16 priority PAHs varied over three orders of magnitude (25-49,000 ng g −1) covering the range of concentrations previously reported for Mediterranean harbors. Pyrogenic processes were found to be the dominant emission source of PAHs, with considerable differences among ports. The prokaryotic communities were identified by using the terminal restriction fragment length polymorphism, targeting the 16S rRNA gene for Bacteria and Archaea as well as the dsrAB gene for sulphate-reducing bacteria (SRB). The structure of the three benthic prokaryotic communities varied consistently among the ports. The structure of Bacteria and Archaea exhibited strong spatiotemporal variations that did not allow us to specifically link the observed differences in community structures with PAH sources. On the contrary, our study provided, for the first time, evidence that the PAH emission sources play a role in structuring benthic communities of SRB. Our findings indicate that the SRB community can be used as a valuable candidate biotic descriptor for bioremediation monitoring in heavily impacted port sediments.
Corsica and Sardinia represent major hotspots of plant diversity in the Mediterranean area and are priority regions for conservation due to their high number of endemic plant species. However, information supporting human decision-making on the conservation of these species is still scarce, especially at the genetic level. In this work, the first assessment is reported of the species-wide spatial genetic structure and diversity of Ferula arrigonii Bocchieri, a Corso-Sardinian endemic located in a few coastal sites and on small islands. Nine populations covering the entire natural range of the species were investigated by means of AFLP (amplified fragment length polymorphism) markers. Results indicate that this species is characterised by high levels of genetic polymorphism (92% polymorphic fragments) and of genetic diversity (H(w) = 0.317) and by relatively low differentiation among populations (F(st) = 0.057). PCoA, Bayesian analysis and neighbour-joining clustering were also employed to investigate the genetic structure of this species. Three genetically distinct groups were detected, although with considerable overlap between populations.
The strain diversity and the population structure of nosocomial Acinetobacter isolated from patients admitted to different hospitals in Florence, Italy, during a 3-year surveillance program, were investigated by amplified fragment length polymorphism (AFLP). The majority of isolates (84.5%) were identified as A. baumannii, confirming this species as the most common hospital Acinetobacter. Three very distinct A. baumannii clonal groups (A1, A2, and A3) were defined. The A1 isolates appeared to be genetically related to the wellcharacterized European EU II clone. A2 was responsible for three outbreaks which occurred in two intensive care units. Space/time population dynamic analysis showed that A1 and A2 were successful nosocomial clones. Most of the A. baumannnii isolates were imipenem resistant. The genetic determinants of carbapenem resistance were investigated by multiplex PCR, showing that resistance, independently of hospital origin, period of isolation, or clonal group, was associated with the presence of a bla OXA-58-like gene and with ISAba2 and ISAba3 elements flanking this gene. bla OXA-58 appeared to be horizontally transferred. This study showed that the high discriminatory power of AFLP is useful for identification and typing of nosocomial Acinetobacter isolates. Moreover the use of AFLP in a real-time surveillance program allowed us the recognition of clinically relevant and widespread clones and their monitoring in hospital settings. The correlation between clone diffusion, imipenem resistance, and the presence of the bla OXA-58-like gene is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.