The unprecedented emergence of perovskite‐based solar cells (PSCs) has been accompanied by an intensive search of suitable materials for charge‐selective contacts. For the first time a hole‐transporting self‐assembled monolayer (SAM) as the dopant‐free hole‐selective contact in p–i–n PSCs is used and a power conversion efficiency of up to 17.8% with average fill factor close to 80% and undetectable parasitic absorption is demonstrated. SAM formation is achieved by simply immersing the substrate into a solution of a novel molecule V1036 that binds to the indium tin oxide surface due to its phosphonic anchoring group. The SAM and its modifications are further characterized by Fourier‐transform infrared and vibrational sum‐frequency generation spectroscopy. In addition, photoelectron spectroscopy in air is used for measuring the ionization potential of the studied SAMs. This novel approach is also suitable for achieving a conformal coverage of large‐area and/or textured substrates with minimal material consumption and can potentially be extended to serve as a model system for substrate‐based perovskite nucleation and passivation control. Further gains in efficiency can be expected upon SAM optimization by means of molecular and compositional engineering.
We study the properties of water at the surface of an antifreeze protein with femtosecond surface sum frequency generation spectroscopy. We find clear evidence for the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution at temperatures above the freezing point. Decreasing the temperature to the biological working temperature of the protein (0°C to −2°C) increases the amount of ice-like water, while a single point mutation in the ice-binding site is observed to completely disrupt the ice-like character and to eliminate antifreeze activity. Our observations indicate that not the protein itself but ordered ice-like water layers are responsible for the recognition and binding to ice.antifreeze proteins | sum frequency generation | protein hydration
We study the properties of water molecules adjacent to a hydrophobic molecular layer with vibrational sum-frequency generation spectroscopy. We find that the water molecules at D2O/hexane, D2O/heptane, and D2O/polydimethylsiloxane interfaces show an enhanced ordering and stronger hydrogen-bond interactions than the water molecules at a D2O/air interface. With increasing temperature (up to 80 °C) the water structure becomes significantly less ordered and the hydrogen bonds become weaker.
We study the structure and orientation of water molecules at water/alkane and water/polydimethylsiloxane interfaces with surface specific intensity and heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spectroscopy. We observe that the hydrogen-bond structure of the water molecules is enhanced at these interfaces compared to the water/air interface. We also find that the water molecules at the interface show a net orientation of their O-H groups pointing towards to the hydrophobic layer.
We use surface-specific intensity
vibrational sum-frequency generation
and attenuated total reflection spectroscopy to probe the ionization
state of the amino-acids l-alanine and l-proline
at the air/water surface and in the bulk. The ionization state is
determined by probing the vibrational signatures of the carboxylic
acid group, representing the nondissociated acid form, and the carboxylate
anion group, representing the dissociated form, over a wide range
of pH values. We find that the carboxylic acid group deprotonates
at a significantly higher pH at the surface than in the bulk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.