The role of ocean anoxia as a cause of the end-Triassic marine mass extinction is widely debated. Here, we present carbonate-associated sulfate δ34S data from sections spanning the Late Triassic–Early Jurassic transition, which document synchronous large positive excursions on a global scale occurring in ~50 thousand years. Biogeochemical modeling demonstrates that this S isotope perturbation is best explained by a fivefold increase in global pyrite burial, consistent with large-scale development of marine anoxia on the Panthalassa margin and northwest European shelf. This pyrite burial event coincides with the loss of Triassic taxa seen in the studied sections. Modeling results also indicate that the pre-event ocean sulfate concentration was low (<1 millimolar), a common feature of many Phanerozoic deoxygenation events. We propose that sulfate scarcity preconditions oceans for the development of anoxia during rapid warming events by increasing the benthic methane flux and the resulting bottom-water oxygen demand.
The results of an integrated stratigraphic, structural, geophysical, and geochemical study reveal the presence of a crustal discontinuity in western Sicily that, at present, runs roughly N-S along a band from San Vito Lo Capo to Sciacca. The boundary between the two zones of this discontinuity is nearly orthogonal to the main thrust propagation of the Sicilian thrust-and-fold belt. The different Permian to Tertiary sedimentary evolution recorded by the two zones appears related to this discontinuity, with thick carbonate platforms in the western sector facing deepwater successions in the eastern one. The presence of Upper Triassic reefs, huge megabreccia bodies, and widespread submarine volcanisms along the transition zone suggests the presence of a long-lasting weakness zone. This zone has been reactivated episodically as transpressional and/or transtensional faults in relation to the different geodynamic stress acting in central Mediterranean area in different epochs. We speculate that this transition zone has represented a segment of the passive margin of the Ionian Tethys. During the Maghrebian convergence a different style of deformation has affected the two sectors floored by different sedimentary multilayers. The orthogonal-to-oblique differential convergence between the two sectors has resulted in right-lateral transpressional motions, leading to oblique thrusting of deepwater-derived thrusts onto platform-derived thrusts associated with clockwise rotations. The oblique convergence is still ongoing as demonstrated by the seismicity of the area, by the geothermal field with high mantle-derived helium fluxes and by the GPS measurements collected by different authors.According to Casero and Roure [1994], in western Sicily a NW-SE regional trending shear zone (Segesta Fault) runs across the Sicilian fold-and-thrust belt (SFTB), from San Vito Lo Capo to the Sciacca area. The authors consider the Segesta Fault to be a first-order crustal structure, as it is observed in seismic lines offshore of Sciacca. However, the field evidence of this strike-slip fault is weak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.