Quantum chemical calculations have been carried out to investigate the structure and stability of 1:1 and 1:2 HOSO-water and CH3SO-water complexes. All of the geometries have been optimized at the DFT and at the CCSD levels of theory using 6-311++G(2df,2pd) and aug-cc-pVDZ basis sets, respectively. The energetics of the hydrogen-bonded complexes are reported at G4 and CBS-QB3 levels of theory. A general characteristic future of the minimum-energy structure complexes is cyclic double H bonding for 1:1 complexes and cyclic triple H bonding for 1:2 complexes. Calculations predict relative large binding energies of 8.2 and 16.8 kcal mol(-1) for 1:1 and 1:2 HOSO-water complexes, respectively, at the CBS-QB3 level of theory. CH3SO-water complexes have somewhat lower stability; the binding energy of 3.8 kcal mol(-1) for the 1:1 CH3SO-water complex increases to 9.5 kcal mol(-1) for the 1:2 complex. The calculated shifts in vibrational frequencies due to complex formation show that the frequencies and intensities of H-bonded OH stretching regions are most affected by complex formation. The large frequency shift is mainly oriented to these OH bonds involved in H-bonding interactions. Vertical electronic excitation energies and the corresponding oscillator strengths have been calculated for the representative radical-water complexes using the TDDFT method and aug-cc-pVTZ basis set. No significant excitation energy difference was observed between the low-lying electronic states of either HOSO within the HOSO-water complexes or CH3SO within the CH3SO-water 1:1 complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.