Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.
Cytoskeletal remodeling events are tightly regulated by signal transduction systems that impinge on adhesion components and modulators of cellular architecture. We have previously shown that the Ste20-like kinase (SLK) can induce apoptosis through the induction of actin disassembly and cellular retraction (Sabourin, L. A., Tamai, K., Seale, P., Wagner, J., and Rudnicki, M. A. (2000) Mol. Cell. Biol. 20, 684 -696). Using immunofluorescence studies, we report that SLK is redistributed with adhesion components at large podosome-like adhesion sites in fibronectin-stimulated fibroblasts. However, in vitro kinase assays demonstrate that its activity is not modulated following fibronectin stimulation. Double immunofluorescence studies in exponentially growing or spreading fibroblasts show that SLK is associated with the microtubule network and can be coprecipitated with ␣-tubulin. Furthermore, the stimulation of adhesion site formation by microtubule-disrupting agents induces the relocalization of SLK with unpolymerized ␣-tubulin to large vinculin-containing adhesion complexes. Using microinjection studies, we show that ectopic expression of activated SLK induces the disassembly of actin stress fibers, a process that can be inhibited by dominant negative Rac1. Significantly, endogenous SLK can be colocalized with Rac1 in spreading cells on FN. Finally, the overexpression of SLK by adenoviral infection inhibits cell spreading on fibronectin. These results suggest that SLK is part of a microtubuleassociated complex that is targeted to adhesion sites and implicated in the regulation of cytoskeletal dynamics.
We have previously shown that the Ste20-like kinase SLK is a microtubule-associated protein that can regulate actin reorganization during cell adhesion and spreading (Wagner, S., Flood, T. A., O'Reilly, P., Hume, K., and Sabourin, L. A. (2002) J. Biol. Chem. 277, 37685-37692). Because of its association with the microtubule network, we investigated whether SLK plays a role in cell cycle progression, a process that requires microtubule dynamics during mitosis. Consistent with microtubule association in exponentially growing cells, our results showed that SLK co-localizes with the mitotic spindle in cells undergoing mitosis. Expression of a kinase-inactive mutant or SLK small interfering RNAs inhibited cell proliferation and resulted in an accumulation of quiescent cells stimulated to re-enter the cell cycle in the G 2 phase. Cultures expressing the mutant SLK displayed a normal pattern of cyclin D, E, and B expression but failed to down-regulate cyclin A levels, suggesting that they cannot proceed through M phase. In addition, these cultures displayed low levels of both phospho-H3 and active p34/cdc2 kinase. Overexpression of active SLK resulted in ectopic spindle assembly and the induction of cell cycle re-entry of Xenopus oocytes, suggesting that SLK is required for progression through G 2 upstream of H1 kinase activation.Cell cycle progression is monitored through kinase-mediated signal transduction and the binding of various cyclin proteins to their respective cyclin-dependent kinases (Cdks (2, 3)). The activity of a cyclin/Cdk complex is regulated by cycles of expression and destruction of the cyclin subunit (reviewed in Ref. 4). G 1 progression is regulated, in part, by cyclins D and E and their respective cyclin-dependent kinases in a complex pathway that results in the retinoblastoma protein phosphorylation, and consequently, the production of cyclin A, leading to S phase entry (reviewed in Ref. 5). Cyclin B synthesis initiates at the end of S phase (6, 7) and forms a complex with p34 cdc2/cdk1 . This complex has been termed MPF 3 (maturation promoting factor or mitosis promoting factor) and is required for mitotic entry (reviewed in Ref. 8). During interphase, cytosolic MPF is kept inactive by inhibitory phosphorylation of cdc2 on Thr-14 and Tyr-15 by Myt1 and Wee1, respectively (9 -11). Activation of this complex is triggered by the Cdc25C phosphatase through cdc2 dephosphorylation of . Following dephosphorylation of these residues, MPF is believed to phosphorylate and further activate Cdc25C, resulting in full activation of MPF through an autocatalytic feedback loop (15,16). This results in the translocation of MPF from the cytoplasm to the nucleus at the beginning of mitosis (17), where it phosphorylates histone H1 (18) and induces changes in the microtubule network (19) and actin filaments (20).In Xenopus, polo-like kinase (Plx1) has been shown to phosphorylate and activate Cdc25 (21), and polo-like kinase kinase (xPlkk1) has been shown to be a direct activator of Plx1 (22). However, this may be an o...
The Ste20-like kinase, SLK, is involved in the control of cell motility through its effects on actin reorganization and focal adhesion turnover. Here we investigated the role of SLK in chemotaxis downstream of the tyrosine kinase receptor, HER2/ErbB2/Neu, which is frequently overexpressed in human breast cancers. Our results show that SLK is required for the efficient cell migration of human and mouse mammary epithelial cell lines in the presence of the Neu activator, heregulin, as a chemoattractant. SLK activity is stimulated by heregulin treatment or by overexpression of activated Neu. Phosphorylation of tyrosine 1201 or tyrosines 1226/7 on Neu is a key event for SLK activation and cell migration, and cancer cell invasion mediated by these tyrosines is inhibited by kinase-inactive SLK. Signaling pathway inhibitors show that Neu-mediated SLK activation is dependent on MEK, PI3K, PLCc and Shc signaling. Furthermore, heregulinstimulated SLK activity requires signals from the focal adhesion proteins, FAK and src. Finally, phospho-FAK analysis shows that SLK is required for Neu-dependent focal adhesion turnover. Together, these studies define an interaction between Neu and SLK signaling in the regulation of cancer cell motility.
Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses, and tissue repair. Here, we show that the microtubule-associated Ste20 kinase SLK, required for cell migration, interacts with the LIM domain binding transcriptional cofactor proteins Ldb1/CLIM2 and Ldb2/CLIM1/NLI. We demonstrate that Ldb1 and 2 bind directly to the SLK carboxy-terminal AT1-46 homology domain in vitro and in vivo. We find that Ldb1 and -2 colocalize with SLK in migrating cells and that both knockdown and overexpression of either factor results in increased motility. Supporting this, knockdown of Ldb1 increases focal adhesion turnover and enhances migration in fibroblasts. We propose that Ldb1/2 function to maintain SLK in an inactive state before its activation. These findings highlight a novel function for Ldb1 and -2 and expand their role to include the control of cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.