The areal modeling of the extremes of a natural process such as rainfall or
temperature is important in environmental statistics; for example,
understanding extreme areal rainfall is crucial in flood protection. This
article reviews recent progress in the statistical modeling of spatial
extremes, starting with sketches of the necessary elements of extreme value
statistics and geostatistics. The main types of statistical models thus far
proposed, based on latent variables, on copulas and on spatial max-stable
processes, are described and then are compared by application to a data set on
rainfall in Switzerland. Whereas latent variable modeling allows a better fit
to marginal distributions, it fits the joint distributions of extremes poorly,
so appropriately-chosen copula or max-stable models seem essential for
successful spatial modeling of extremes.Comment: Published in at http://dx.doi.org/10.1214/11-STS376 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
The last decade has seen max-stable processes emerge as a common tool for the statistical modeling of spatial extremes. However, their application is complicated due to the unavailability of the multivariate density function, and so likelihood-based methods remain far from providing a complete and flexible framework for inference. In this article we develop inferentially practical, likelihood-based methods for fitting max-stable processes derived from a composite-likelihood approach. The procedure is sufficiently reliable and versatile to permit the simultaneous modeling of marginal and dependence parameters in the spatial context at a moderate computational cost. The utility of this methodology is examined via simulation, and illustrated by the analysis of United States precipitation extremes.
Many applications in risk analysis, especially in environmental sciences, require the estimation of the dependence among multivariate maxima. A way to do this is by inferring the Pickands dependence function of the underlying extreme-value copula. A nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of a specific type of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated by analyzing clusters consisting of seven weather stations that have recorded weekly maxima of hourly rainfall in France from 1993 to 2011.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.