SREBPs (sterol-regulatory-element-binding proteins) are a family of transcription factors that modulate the expression of several enzymes implicated in endogenous cholesterol, fatty acid, triacylglycerol and phospholipid synthesis. In the present study, evidence for SREBP-1 regulation at the translational level is reported. Using several experimental approaches, we have demonstrated that the 5'-UTR (untranslated region) of the SREBP-1a mRNA contains an IRES (internal ribosome entry site). Transfection experiments with the SREBP-1a 5'-UTR inserted in a dicistronic reporter vector showed a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. Insertion of the SREBP-1c 5'-UTR in the same vector also stimulated the translation of the downstream cistron, but the observed effect can be ascribed, at least in part, to a cryptic promoter activity. Cellular stress conditions, such as serum starvation, caused an increase in the level of SREBP-1 precursor and mature form in both Hep G2 and HeLa cells, despite the overall reduction in protein synthesis, whereas mRNA levels for SREBP-1 were unaffected by serum starvation. Transfection experiments carried out with a dicistronic construct demonstrated that the cap-dependent translation was affected more than IRES-mediated translation by serum starvation. The thapsigargin- and tunicamycin-induced UPR (unfolded protein response) also increased SREBP-1 expression in Hep G2 cells, through the cap-independent translation mediated by IRES. Overall, these findings indicate that the presence of IRES in the SREBP-1a 5'-UTR allows translation to be maintained under conditions that are inhibitory to cap-dependent translation.
A growing amount of evidence suggests the involvement of ER (endoplasmic reticulum) stress in lipid metabolism and in the development of some liver diseases such as steatosis. The transcription factor SREBP-1 (sterol-regulatory-element-binding protein 1) modulates the expression of several enzymes involved in lipid synthesis. Previously, we showed that ER stress increased the SREBP-1a protein level in HepG2 cells, by inducing a cap-independent translation of SREBP-1a mRNA, through an IRES (internal ribosome entry site), located in its leader region. In the present paper, we report that the hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1) interacts with 5'-UTR (untranslated region) of SREBP-1a mRNA, as an ITAF (IRES trans-acting factor), regulating SREBP-1a expression in HepG2 cells and in primary rat hepatocytes. Overexpression of hnRNP A1 in HepG2 cells and in rat hepatocytes increased both the SREBP-1a IRES activity and SREBP-1a protein level. Knockdown of hnRNP A1 by small interfering RNA reduced either the SREBP-1a IRES activity or SREBP-1a protein level. hnRNP A1 mediates the increase of SREBP-1a protein level and SREBP-1a IRES activity in Hep G2 cells and in rat hepatocytes upon tunicamycin- and thapsigargin-induced ER stress. The induced ER stress triggered the cytosolic relocation of hnRNP A1 and caused the increase in hnRNP A1 bound to the SREBP-1a 5'-UTR. These data indicate that hnRNP A1 participates in the IRES-dependent translation of SREBP-1a mRNA through RNA-protein interaction. A different content of hnRNP A1 was found in the nuclei from high-fat-diet-fed mice liver compared with standard-diet-fed mice liver, suggesting an involvement of ER stress-mediated hnRNP A1 subcellular redistribution on the onset of metabolic disorders.
Sixteen Apennine chamois Rupicapra pyrenaica ornata (10 females, 6 males) were released into a protected area, the Sibillini Mountains National Park, Central Apennines, Italy, and monitored using global positioning system radio tags during 2008–2010. Founders caught in the wild (n = 8) and those reared in large enclosures (n = 8) differed in movement frequency (inter-fix distance per hour) and maximum distance covered (from the release site) in the first 5 months after release: both were significantly greater in wild individuals, males moved significantly more than females, wild individuals shifted their home ranges significantly more often than captive ones, and no differences were observed between the sexes or age classes. A mixed strategy of selection of wild and captive founders has proven successful in preventing large movements in the initial stages of release yet still providing sufficient opportunity to avoid inbreeding depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.