Binding of human plasminogen to Streptococcus pneumoniae and its subsequent activation promotes penetration of bacteria through reconstituted basement membranes. In this study, we have characterized a novel pneumococcal surface protein with a molecular mass of 47 kDa, designated Eno, which specifically binds human plasmin(ogen), exhibits α‐enolase activity and is necessary for viability. Using enzyme assays, we have confirmed the α‐enolase activity of both pneumococcal surface‐displayed Eno and purified recombinant Eno protein. Immunoelectron microscopy indicated the presence of Eno in the cytoplasm as well as on the surface of encapsulated and unencapsulated pneumococci. Plasminogen‐binding activity was demonstrated with whole pneumococcal cells and purified Eno protein. Binding of activated plasminogen was also shown for Eno; however, the affinity for plasmin is significantly reduced compared with plasminogen. Results from competitive inhibition assays indicate that binding is mediated through the lysine binding sites in plasmin(ogen). Carboxypeptidase B treatment and amino acid substitutions of the C‐terminal lysyl residues of Eno indicated that the C‐terminal lysine is pivotal for plasmin(ogen)‐binding activity. Eno is ubiquitously distributed among pneumococcal serotypes, and binding experiments suggested the reassociation of secreted Eno to the bacterial cell surface. The reassociation was also confirmed by immunoelectron microscopy. The results suggest a mechanism of plasminogen activation for human pathogens that might contribute to their virulence potential in invasive infectious processes.
SummaryThe interaction of Streptococcus pneumoniae with human plasmin(ogen) represents a mechanism to enhance bacterial virulence by capturing surfaceassociated proteolytic activity in the infected host. Plasminogen binds to surface displayed pneumococcal a a a a -enolase (Eno) and is subsequently activated to the serine protease plasmin by host-derived tissue plasminogen activator (tPA) or urokinase (uPA).
Surface-exposed proteins are key players during the infectious process of pathogenic bacteria. The cell surface of the Gram-positive human pathogen Streptococcus pneumoniae is decorated not only by typical Gram-positive surface proteins, but also by a family of proteins that recognizes the phosphorylcholine of the lipoteichoic and teichoic acids, namely the choline-binding proteins, and by non-classical surface proteins that lack a leader peptide and membrane-anchor motif. A comprehensive understanding of how microbial proteins subvert host immunity or host protein functions is a prerequisite for the development of novel therapeutic strategies to combat pneumococcal infections. This article reviews recent progress in the investigation of the versatility and sophistication of the virulence functions of surface-exposed pneumococcal proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.