fellettiD fF nd qri de venizD gF nd tonesD tF nd fizziD F nd f¤ orgerD vF nd egurD qF nd gstellettiD eF nd n de fundD F nd erestrupD uF nd frryD tF nd felkD uF nd ferkhuysenD eF nd firnieEquvinD uF nd fussettiniD wF nd grolliD wF nd gonsuegrD F nd hopioD iF nd peierfeilD F nd pern¡ ndezD F nd pernndez qrridoD F nd qriEzquezD iF nd qrridoD F nd qinnioD qF nd qoughD F nd tepsenD xF nd tonesD FiF nd uempD F nd uerrD tF nd uingD tF nd Lpi¡ nskD wF nd v¡ zroD qF nd vusD wFgF nd wrelloD vF nd wrtinD F nd wqinnityD F nd y9rnleyD tF nd ylivo del emoD F nd rsiewizD F nd inonD qF nd odriguezD gF nd oyteD tF nd hneiderD gFF nd ummersD tFF nd llesiD F nd owlesD eFF nd erspoorD iF nd nningenD rF nd ntzenD uFwF nd ildmnD vF nd lewskiD wF @PHPHA 9wore thn one million rriers frgment iurope9s riversF9D xtureFD SVV F ppF RQTERRIF Further information on publisher's website: httpsXGGdoiForgGIHFIHQVGsRISVTEHPHEQHHSEP Publisher's copyright statement:Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1The following paper is the final version prior to publication on 22 September 2015. are proposed, the way in which indicators could contribute to classification is discussed. All of the methods described in Table 1 consider a hierarchy of spatial units, but the degree to which they develop the other aspects of the conceptual approach proposed by Frissell et al.(1986) varies widely.2. Many of the frameworks focus entirely on hydromorphological processes and forms that are either directly measured or inferred. This is because interactions between processes and forms control the dynamic morphology or behaviour of rivers and their mosaics of habitats.Hydromorphological processes drive longitudinal and lateral connectivity within river networks and corridors, the assemblage and turnover of physical habitats, and the sedimentary and vegetation structures associated with those habitats.3. Some frameworks are conceptual, providing a way of thinking about or structuring analyses of river systems, and interpreting their processes, morphology and function (e.g. Frissell et al., 1986;Habersack, 2000;Fausch et al., 2002;Thorp et al., 2006;Beechie et al., 2010;McCluney et al., 2014). Some frameworks are more quantitative, generating one or more indices or classifications of spatial units that support assessment of river systems (e.g. Rosgen, 1994;González del Tánago and García de Jalón, 2004;Merovich et al., 2013;Rinaldi et al., 2013Rinaldi et al., , 2015a MacDonald, 2002;Brierley and Fryirs, 2005;Beechie et al., 2010; Rinaldi et al., 2013a Rinaldi et al., , 2015.In some cases, theoretical or historical analyses or consideration of specific future scenarios are used to develop space-time understanding that can support management decisionmaking (e.g. Buffington, 1997, 1998;Montgomery and MacDonald, 2002;Benda et al., 2004;Brierley and Fryirs, 2005;McCluney et al., 2014 , 1997, 1998Montgomery and MacDonald, 2002;Benda et al., 2004;Brierley and Fryirs, 2005;Merovich et al., 2013;Rinaldi et al., 2013Rinaldi et al., , 2015a. Furthermore, some of the frameworks include indicators of human pressures and their impacts (e.g. Merovich et al., 2013;McCluney et al., 2014;Rinaldi et al., 2013Rinaldi et al., , 2015a.6. Finally, although most frameworks could be described as incorporating processes to some degree, some methods are particularly process-based, even when processes are inferred from forms and associations rather than being quantified by direct measurements.Frameworks that consider temporal dynamics and trajectories of historical change (see point 4, above) are particularly effective in developing understanding of processes and the impacts of changed processes cascading through time and across spatial scales.Although the list of frameworks presented in Table 1 is far from comprehensive, ...
Two decades after the construction of the first major dam, the Mekong basin and its six riparian countries have seen rapid economic growth and development of the river system. Hydropower dams, aggregate mines, flood-control dykes, and groundwater-irrigated agriculture have all provided short-term economic benefits throughout the basin. However, it is becoming evident that anthropic changes are significantly affecting the natural functioning of the river and its floodplains. We now ask if these changes are risking major adverse impacts for the 70 million people living in the Mekong Basin. Many livelihoods in the basin depend on ecosystem services that will be strongly impacted by alterations of the sediment transport processes that drive river and delta morpho-dynamics, which underpin a sustainable future for the Mekong basin and Delta. Drawing upon ongoing and recently published research, we provide an overview of key drivers of change (hydropower development, sand mining, dyking and water infrastructures, climate change, and accelerated subsidence from pumping) for the Mekong's sediment budget, and their likely individual and cumulative impacts on the river system. Our results quantify the degree to which the Mekong delta, which receives the impacts from the entire connected river basin, is increasingly vulnerable in the face of declining sediment loads, rising seas and subsiding land. Without concerted action, it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by salinization and frequent flooding. The threat to the Delta can be understood only in the context of processes in the entire river basin. The Mekong River case can serve to raise awareness of how the connected functions of river systems in general depend on undisturbed sediment transport, thereby informing planning for other large river basins currently embarking on rapid economic development.
Stream power is a measure of the main driving forces acting in a channel and determines a river's capacity to transport sediment and perform geomorphic work. Recent digital elevation models allow the calculation of channel gradient and consequently stream power at unprecedented spatial resolution, opening promising and novel opportunities to investigate river geomorphic processes and forms. The present paper investigates the suitability of map‐derived information on total and specific stream power (SSP) to identify dominant processes within the channel (i.e. erosion, transport or deposition). SSP has been already used to identify a threshold for channel stability. This paper tests this knowledge and investigates whether or not attributes of stream power profiles are statistically correlated with distinctive field morphological forms. Two gravel bed single‐thread English rivers are used as case studies, the Lune and the Wye. Available deposition and erosion features surveyed in the field from 124 different locations are used to classify channel reaches as erosion, transport or deposition dominated. Meaningful patterns emerge between the stream power attributes and the field‐based channel classification. An SSP threshold, which erosion is triggered, compares favourably with the ones in the literature. Information about upstream stream power profiles helps to determine the dominant processes. The joint configuration of local and upstream stream power information uniquely classifies reaches into four classes of different sensitivity to erosion and deposition. Copyright © 2013 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.