Introduction While early diagnostic decision support systems were built around knowledge bases, more recent systems employ machine learning to consume large amounts of health data. We argue curated knowledge bases will remain an important component of future diagnostic decision support systems by providing ground truth and facilitating explainable human-computer interaction, but that prototype development is hampered by the lack of freely available computable knowledge bases. Methods We constructed an open access knowledge base and evaluated its potential in the context of a prototype decision support system. We developed a modified set-covering algorithm to benchmark the performance of our knowledge base compared to existing platforms. Testing was based on case reports from selected literature and medical student preparatory material. Results The knowledge base contains over 2000 ICD-10 coded diseases and 450 RX-Norm coded medications, with over 8000 unique observations encoded as SNOMED or LOINC semantic terms. Using 117 medical cases, we found the accuracy of the knowledge base and test algorithm to be comparable to established diagnostic tools such as Isabel and DXplain. Our prototype, as well as DXplain, showed the correct answer as “best suggestion” in 33% of the cases. While we identified shortcomings during development and evaluation, we found the knowledge base to be a promising platform for decision support systems. Conclusion We built and successfully evaluated an open access knowledge base to facilitate the development of new medical diagnostic assistants. This knowledge base can be expanded and curated by users and serve as a starting point to facilitate new technology development and system improvement in many contexts. Electronic supplementary material The online version of this article (10.1186/s12911-019-0804-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.