We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e. the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state, filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This article sheds new light on the theory of convergence in continuous time.
Particle filters are a popular and flexible class of numerical algorithms to solve a large class of nonlinear filtering problems. However, standard particle filters with importance weights have been shown to require a sample size that increases exponentially with the dimension D of the state space in order to achieve a certain performance, which precludes their use in very high-dimensional filtering problems. Here, we focus on the dynamic aspect of this curse of dimensionality (COD) in continuous time filtering, which is caused by the degeneracy of importance weights over time. We show that the degeneracy occurs on a time-scale that decreases with increasing D. In order to soften the effects of weight degeneracy, most particle filters use particle resampling and improved proposal functions for the particle motion. We explain why neither of the two can prevent the COD in general. In order to address this fundamental problem, we investigate an existing filtering algorithm based on optimal feedback control that sidesteps the use of importance weights. We use numerical experiments to show that this Feedback Particle Filter (FPF) by [31] does not exhibit a COD.
The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals’ performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the ‘curse of dimensionality’, and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.