The majority of cancer patients with advanced disease experience weight loss, including loss of lean body mass. Severe weight loss is characteristic for cancer cachexia, a condition that significantly impairs functional status and survival. The underlying causes of cachexia are incompletely understood, and currently no therapeutic approach can completely reverse the condition. Autophagy coordinates lysosomal destruction of cytosolic constituents and is systemically induced by starvation. We hypothesized that starvation-mimicking signaling compounds secreted from tumor cells may cause a systemic acceleration of autophagy during cachexia. We found that IL-6 secreted by tumor cells accelerates autophagy in myotubes when complexed with soluble IL-6 receptor (trans-signaling). In lung cancer patients, were cachexia is prevalent, there was a significant correlation between elevated IL-6 expression in the tumor and poor prognosis of the patients. We found evidence for an autophagy-inducing bioactivity in serum from cancer patients and that this is clearly associated with weight loss. Importantly, the autophagy-inducing bioactivity was reduced by interference with IL-6 trans-signaling. Together, our findings suggest that IL-6 trans-signaling may be targeted in cancer cachexia.
BackgroundCachexia affects the majority of patients with advanced cancer and is associated with a reduction in treatment tolerance, response to therapy, and duration of survival. One impediment towards the effective treatment of cachexia is a validated classification system.Methods41 patients with resectable upper gastrointestinal (GI) or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL) and/or low muscularity (LM). Four diagnostic criteria were used >5%WL, >10%WL, LM, and LM+>2%WL. All patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, Western blots for markers of autophagy, SMAD signalling, and inflammation.FindingsCompared with non-cachectic cancer patients, patients with LM or LM+>2%WL, mean muscle fibre diameter was reduced by about 25% (p = 0.02 and p = 0.001 respectively). No significant difference in fibre diameter was observed if patients had WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased in patients with either >5%WL or LM+>2%WL. Compared with non-cachectic patients, SMAD3 protein levels were increased in patients with >5%WL (p = 0.022) and with >10%WL, beclin (p = 0.05) and ATG5 (p = 0.01) protein levels were increased. There were no differences in phospho-NFkB or phospho-STAT3 levels across any of the groups.ConclusionMuscle fibre size, biochemical composition and pathway phenotype can vary according to whether the diagnostic criteria for cachexia are based on weight loss alone, a measure of low muscularity alone or a combination of the two. For intervention trials where the primary end-point is a change in muscle mass or function, use of combined diagnostic criteria may allow identification of a more homogeneous patient cohort, reduce the sample size required and enhance the time scale within which trials can be conducted.
BackgroundSarcopenia is defined as the age‐related loss of skeletal muscle mass and function. While all humans lose muscle with age, 2–5% of elderly adults develop functional consequences (disabilities). The aim of this study was to investigate muscle myogenesis in healthy elderly adults, with or without sarcopenia, compared with middle‐aged controls using both in vivo and in vitro approaches to explore potential biomarker or causative molecular pathways associated with sarcopenic versus non‐sarcopenic skeletal muscle phenotypes during ageing.MethodsBiomarkers of multiple molecular pathways associated with muscle regeneration were analysed using quantitative polymerase chain reaction in quadriceps muscle samples obtained from healthy elderly sarcopenic (HSE, n = 7) or non‐sarcopenic (HENS, n = 21) and healthy middle‐aged control (HMC, n = 22) groups. An in vitro system of myogenesis (using myoblasts from human donors aged 17–83 years) was used to mimic the environmental challenges of muscle regeneration over time.ResultsThe muscle biopsies showed evidence of satellite cell activation in HENS (Pax3, P < 0.01, Pax7, P < 0.0001) compared with HMC. Early myogenesis markers Myogenic Differentiation 1 (MyoD1) and Myogenic factor 5 (Myf5) (P < 0.0001) and the late myogenesis marker myogenin (MyoG) (P < 0.01) were increased in HENS. In addition, there was a 30‐fold upregulation of TNF‐α in HENS compared with HMC (P < 0.0001). The in vitro system demonstrated age‐related upregulation of pro‐inflammatory cytokines (2‐fold upregulation of interleukin (IL)‐6, IL‐8 mRNA, increased secretion of tumor necrosis factor‐α (TNF‐α) and IL‐6, all P < 0.05) associated with impaired kinetics of myotube differentiation.The HSE biopsy samples showed satellite cell activation (Pax7, P < 0.05) compared with HMC. However, no significant upregulation of the early myogenesis (MyoD and Myf5) markers was evident; only the late myogenesis marker myogenin was upregulated (P < 0.05).Higher activation of the oxidative stress pathway was found in HENS compared with the HSE group. In contrast, there was 10‐fold higher upregulation of HSPA1A a stress‐induced chaperone acting upon misfolded proteins in HSE compared with the HENS group.ConclusionsBoth pathological and adaptive processes are active in skeletal muscle during healthy ageing. Muscle regeneration pathways are activated during healthy ageing, but there is evidence of dysregulation in sarcopenia. In addition, increased cellular stress, with an impaired oxidative‐stress and mis‐folded protein response (HSPA1A), may be associated with the development of sarcopenia. The in vitro system of young and old myoblasts replicated some of the differences between young and old muscle.
BackgroundCancer cachexia (cancer‐induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age‐related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early.MethodsWe used a range of omics approaches: (i) undepleted proteome was quantified using advanced high mass accuracy mass spectrometers in SWATH‐MS acquisition mode; (ii) phospho epitopes were quantified using protein arrays; and (iii) morphology was assessed using fluorescent microscopy.ResultsWe quantified the soluble proteome of muscle biopsies from cancer cachexia patients and compared them with cohorts of cancer patients and healthy individuals with and without age‐related muscle loss (aka age‐related sarcopenia). Comparing the proteomes of these cohorts, we quantified changes in muscle contractile myosins and energy metabolism allowing for a clear identification of cachexia patients. In an in vitro time lapse experiment, we mimicked cancer cachexia and identified signal transduction pathways governing cell fusion to play a pivotal role in preventing muscle regeneration.ConclusionsThe work presented here lays the foundation for further understanding of muscle wasting diseases and holds the promise of overcoming ambiguous weight loss as a measure for defining cachexia to be replaced by a precise protein signature.
Muscle wasting in old age or cancer may result from failed myofiber regeneration and/or accelerated atrophy. This study aimed to determine from transcriptomic analysis of human muscle the integrity of the cellular stress response system in relation to satellite cell differentiation or apoptosis in patients with cancer (weight-stable (CWS) or weight-losing (CWL)) or healthy elderly (HE) when compared with healthy middle-aged controls (HMA). 28 patients with cancer (CWS: 18 and CWL: 10), HE: 21 and HMA: 20 underwent biopsy of quadriceps muscle. The expression of transcription factors for muscle regeneration (Pax3, Pax7 and MyoD) was increased in CWS and HE compared with HMA (p<0.001). In contrast, the expression of the late myogenic differentiation marker MyoG was reduced in CWS and CWL but increased in HE (p<0.0001). Bax was significantly increased in CWS, CWL and HE (P<0.0001). Expression of the oxidative defense genes SOD2, GCLM, and Nrf2 was decreased in CWS and CWL but increased in HE (p<0.0001). There is evidence for blockade of satellite cell maturation, upregulation of apoptosis and reduced oxidative defense in the muscle of cancer patients. In the healthy elderly the potential for differentiation and oxidative defense is maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.