The positioning of single molecules between nanoscale electrodes has allowed their use as functional units in electronic devices. Although the electrical transport in such devices has been widely explored, optical measurements have been restricted to the observation of electroluminescence from nanocrystals and nanoclusters and from molecules in a scanning tunnelling microscope setup. In this Letter, we report the observation of electroluminescence from the core of a rod-like molecule between two metallic single-walled carbon nanotube electrodes forming a rigid solid-state device. We also develop a simple model to explain the onset voltage for electroluminescence. These results suggest new characterization and functional possibilities, and demonstrate the potential of carbon nanotubes for use in molecular electronics.
The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
Solution‐processed or printed n‐channel field‐effect transistors (FETs) with high performance are not reported very often in the literature due to the scarcity of high‐mobility n‐type organic semiconductors. On the other hand, low‐temperature processed n‐channel metal oxide semiconductor (NMOS) transistors from electron conducting inorganic‐oxide nanoparticles show reduced‐performance and low mobility because of large channel roughness at the channel‐dielectric interface. Here, a method to produce ink‐jet printed high performance NMOS transistor devices using inorganic‐oxide nanoparticles as the transistor channel in combination with a 3D electrochemical gating (EG) via printed composite solid polymer electrolytes is presented. The printed FETs produced show a device mobility value in excess of 5 cm2 V−1 s−1, even though the root mean square (RMS) roughness of the nanoparticulate channel exceeds 15 nm. Extensive studies on the frequency dependent polarizability of composite polymer electrolyte capacitors show that the maximum attainable speed in such printed, long channel transistors is not limited by the ionic conductivity of the electrolytes. Therefore, the approach of combining printable, high‐quality oxide nanoparticles and the composite solid polymer electrolytes, offers the possibility to fully utilize the large mobility of oxide semiconductors to build all‐printed and high‐speed devices. The high polarizability of printable polymer electrolytes brings down the drive voltages to ≤1 V, making such FETs well‐suited for low‐power, battery compatible circuitry.
Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (∼18) at a supply voltage of only 1.5 V.
We establish the use of dielectrophoresis for the directed parallel assembly of individual flakes and nanoribbons of few-layer graphene into electronic devices. This is a bottom-up approach where source and drain electrodes are prefabricated and the flakes are deposited from a solution using an alternating electric field applied between the electrodes. These devices are characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy and electron transport measurements. They are shown to be electrically active and their current carrying capacity and subsequent failure mechanism is revealed. Akin to carbon nanotubes, we show that the dielectrophoretic deposition is self-limiting to one flake per device and is scalable to ultra-large-scale integration densities, thereby enabling the rapid screening of a large number of devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.